
1. ALL METERING, PROTECTION & CONTROL SYSTEM SHALL BE AS PER NIT.

AS MKD. 1 OF 1

- 2. THE EQUIPMENT SHOWN ARE TENTATIVE AND WILL BE FINALIZED DURING DETAIL ENGINEERING.
- 3. BUIDCO WILL TERMINATE 33/11 KV HT CABLE CONNECTION TO HT END OF TRANSFORMER.

0	03.06.14	4 SUBMISSION FOR APPROVEL D.S.R. A.B.				A.DUTT		
REV.	DATE		DESCRIPTION	DESCRIPTION DRN. CHKD. A				
CLIENT:- BIHAR URBAN INFRASTRUCTURE DEVELOPMENT CORPORATION LTD., PATNA					NT			
PROJ	PROJECT:- SEWERAGE NETWORK & STP, HAJIPUR							
TRI-TECH (BEIJING) COMPAN BEIJING, NEW DELHI				NY LI	rd.			
TITLE	:-							
SINGLE LINE DIAGRAM OF POWER CUM MOTOR CONTROL CENTER IPS-2								
SCAI	E SHE	ET	DRAWING NO.			REV.		

TT/BEI/HJ/1051/IPS2/A08

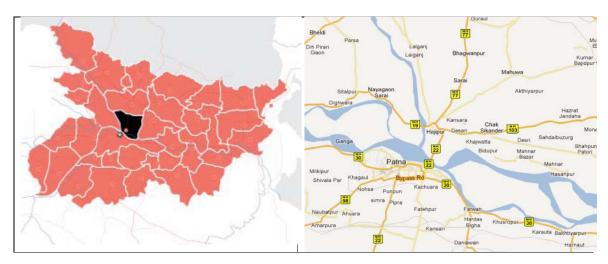
M/S TRI-TECH(BEIJING) CO. LTD.

BIHAR URBAN INFRASTRUCTURE DEVELOPMENT

CORPORATION LTD., PATNA BIHAR

DESIGN BASIS REOPRT OF IPS-3 FOR HAJIPUR

3/12/2014


Contents

1	Topography, Rainfall, Geography and climate	3
2	Salient Features of the project at a glance	3
3	Proposed Network Layout	4
	Zone 1	4
	Zone 2	4
	Zone 3	4
	Zone-4	4
	Zone-5	4
4	Sewer generation	4
5	Contributory Population Peak flow	4
6	Flow calculation:	5
	7 IPS-3 Details	5
	Man hole No just before receiving chamber : (N-2549c)	5
	Outfall Sewer to Receiving Chamber Invert Level : 42.548M	5
	Population Projection:	5
7.	1 Ground Water Infiltration and leakage (GWI)	6
8	Design Period of Sewerage Pumping station	6
9	Coefficient of friction	6
۲,	pefficient of roughness for DI nine (C): 140	6

I. Background

Hajipur is the headquarters of Vaishali district in the Indian state of Bihar, comes under the Patna Administration Division. Hajipur became the Municipality in the year 2002. The municipal area of Hajipur is about 19.64 sq. km. It is famous for producing bananas.

The town Hajipur is situated on the banks of River Gandak. The river Gandak flows from North to South Direction.

1 Topography, Rainfall, Geography and climate

The topography of the town is that of a flat plain area. The mean annual rainfall is 1203 mm mostly confined to monsoon season and with maximum temperature during summer between 41.7°C and minimum temperature of 5.6°C during winter season.

2 Salient Features of the project at a glance

Programme: National Ganga River Basin Authority (NGRBA)

Project: Sewerage Project, Hajipur

Project Town: **Hajipur** District: **Vaisali**

Area: 1993.23 Ha Population, 2001: 119,412

Av Annual Rainfall: 1203 mm Households: 17050

Max Temperature: **41.7oC** Min Temperature: **5.6°C**

3 Proposed Network Layout

Keeping the concept of minimum depth, as per the Tender Document concept, town is divided in Five Zones. Ward wise population are given below table.

Zone 1

It will receive wastewater from whole of the north-western area and South-Western area. In node diagram, Pumping Station No 1 is proposed at node 2535. The wastewater collected from this zone is pumped to Node No 26 of zone-3. In this zone there are 8 wards are there i.e., 1, 2, 3, 4, 5, 6, 7& 8. The collected wastewater is pumped to zone 3.

Zone 2

It will receive wastewater from southern area of town. Pumping Station No 2 is proposed at node 1593. The wastewater collected from this zone is pumped to Node No 816 of zone-3. This is a big zone compare to all other zones, in this zone there are 17 wards are there i.e., 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 24, 27, 29, 30, 31 & 33.

Zone 3

It will received combined sewage generated from Zone 1/2/3. Pumping Station No 3 is proposed at node 2549. The wastewater collected from this zone is pumped to Node No 41in Zone 5. In this zone there are 6 wards are there i.e., 19, 20, 21, 22, 23, & 25

Zone-4

It will receive wastewater from southern area of town. Pumping Station No 4 is proposed at node 1869. The wastewater collected from this zone is pumped to Node No 2322B in zone no 5. In this zone there are 7 wards are there i.e., 28, 32, 34, 35, 36, 37, 38 &39

Zone-5

This zone is contains only 2 wards that is ward no: 25 and ward no: 38, the ward no:25 is partially covered in this zone. It will receive wastewater from whole of the north-East area.

4 Sewer generation

According to the CPHEO manual <u>Para 3.2.4</u>, of manual stipulate that generally 80% of the water supply may be expected to reach the sewers unless there is data available to the contrary.

• <u>Per capita water supply</u> figure of 135 LPCD with 80% contributing to wastewater is adopted to arrive at expected wastewater flows in sewers.

5 Contributory Population Peak flow

Sl. No	Contributing Population	Peak Factor
1	Up to 20,000	3

2	20,000 - 50,000	2.5
3	50,000 – 75,0000	2.25
4	Above 75,0000	2

6 Flow calculation:

Average flow = Total population x $135 \times 0.8/3600/24$

Peak flow = (Average flow*PF + GWI)

7 IPS-3 Details

Man hole No just before receiving chamber : (N-2549c)

GL of 2549c : 48.29M

GL of IPS-3 : 47.737M

GL of disposing point manhole 41B (at Zone-5) : 50.000M

Outfall Sewer to Receiving Chamber Invert Level: 42.548M

Outfall Sewer Diameter : 1000 mm

Raw Sewage Sump Invert Level : 39.948M

Population Projection:

For complete Town (Including all 5 zones)

S.N.	Year	Population projection	Factor of increment of Population
1	2011	152979	=
2	2026	217992	1.424
3	2041	305494	1.4

Multiple Factor by which population increase form year 2011 to year of 2026 = 1.424

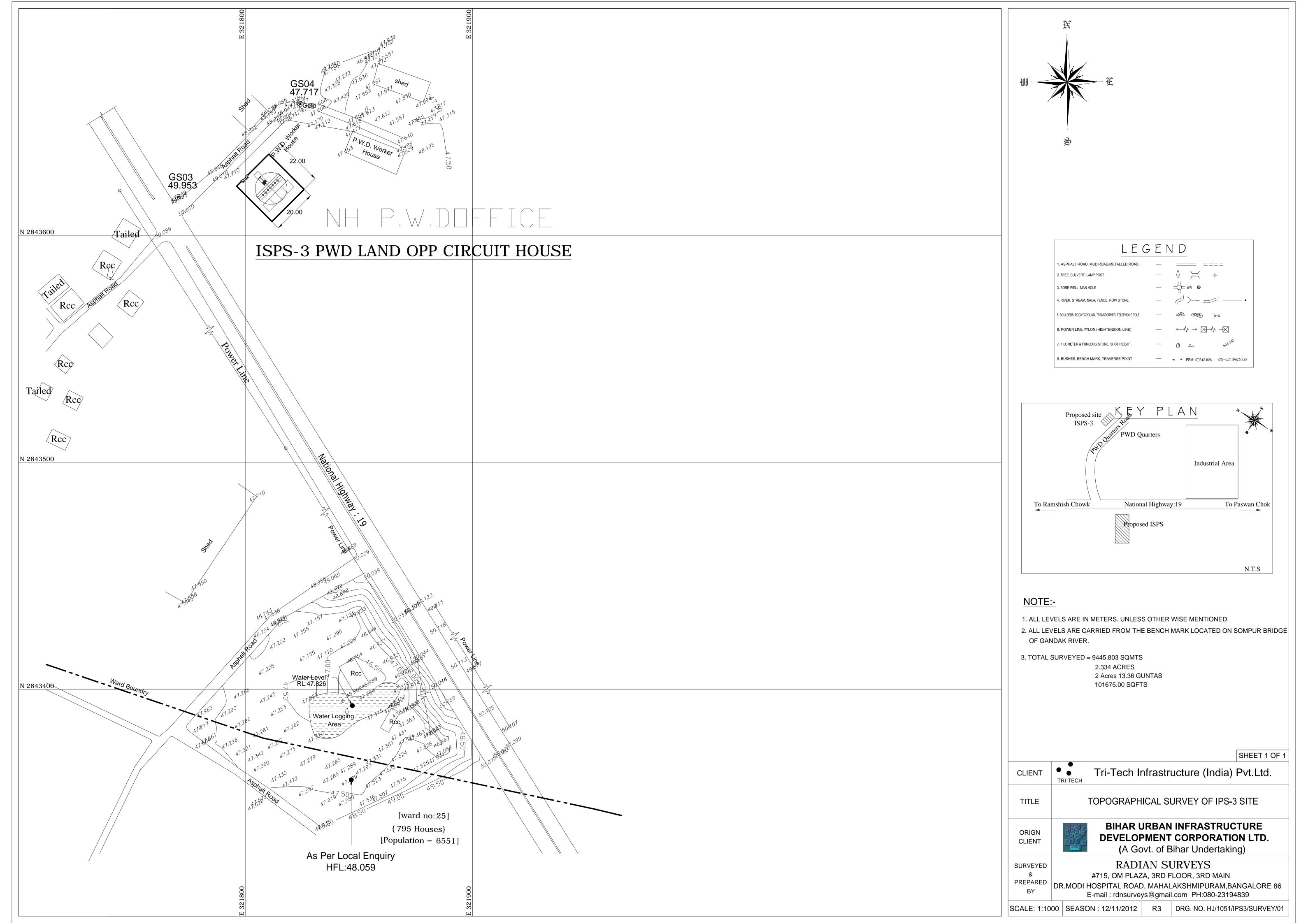
POPULATION FOR ZONE-3:

S.N.	Year	Population (as per Approved zone-4)	GWI	Design Average flow	Design Peak flow	
1	2011	112167	5.626	141.106	323.115	Peak flow =
2	2026	159726	5.626	199.657	404.94	(Avg flow*pf+GWI)
3	2041	223708	5.626	281.978	640.077	

7.1 Ground Water Infiltration and leakage (GWI)

Some quantity of ground water or subsoil water may infiltrate into sewers through defective joints, broken pipes etc. This is significant when water table is high and head of ground water is more than the head of sewage in sewers. Some quantity of sewage may leak out from defective joints and defective pipes when head of sewage is more in sewers than head of ground water outside. Infiltration and leakage mainly depends on quality of construction and water table levels. Infiltration can be considered, **Para 3.2.7** Manual, 5000-50000 liters per day per hectare or 500-5000 liters per day per manhole for sewers laid below ground water level.

As the project town is situated on the banks of River Ganga, the water table in the town is very much near the ground. Looking to possibility of infiltration of ground water, it is proposed to adopt strict quality control measures for material & workmanship. However, a provision of infiltration in sewers is adopted as 500 litre/manhole/day.


8 Design Period of Sewerage Pumping station

Sl. No	Design Component	Design Period	Remarks
1	Pumping mains	30 Years	Cost may be economical
2	Pumping Stations-Civil Work	30 Years	
3	Pumping Machinery	15 Years	Life of pumping machinery is 15 years

9 Coefficient of friction

Sr. No.	Type of fitting	K value
1	Bend	0.32
2	NRV	2.5
3	VALVES	0.8
4	EXPANDOR	0.5

Coefficient of roughness for DI pipe (C): 140

Project : Sewerage Network and 22 MLD STP Plant For Hajipur Town

Contractor: Tri-Tech (Beijing) Company Ltd. Beijing (New Delhi)

Doc. Name : Sizing Calculation for IPS-3

Doc. No. : TT/BEI/HJ/1051/IPS3/A01 REV. 03 DT. 13.03.2014

1.0 SEWAGE GENERATION

Intermediate Pumping Station No. 3 is designed for the following sewage flow rate:

Design Year 2026

Average Flow Rate : (Avg. design flow + Infiltration)

(199.657+5.657)LPS i.e. $0.205 \text{ M}^3/\text{s}$

 $738 \,\mathrm{M}^3/\mathrm{Hour}$

: 17712 M³/Day i.e. 17.712 MLD

Peak Flow Rate : (Peak design flow + Infiltration)

(199.657*2.0+5.657)=404.9LPS i.e. 0.405

 M^3/s

1458.0 M³/Hour

Design Year 2041

Average Flow Rate : (Avg. design flow + Infiltration)

(281.98+5.626) LPS i.e. 0.288 M³/s

1036.8 M³/Hour

Peak Flow Rate : (Peak design flow + Infiltration)

 $640.077 \text{ LPS i.e. } 0.640 \text{ M}^3/\text{s}$

 $2304.0 \text{ M}^3/\text{Hour}$

: $M^3/Day i.e. 55.296 MLD$

2.0 RECEIVING CHAMBER

No. : 1 Material of Construction : RCC

Year 2041 Peak Flow Rate : 0.640 M³/s Plan Dimensions : 2.5 M x 2.5 M

Side Water Depth : 1.24 M

Volume : $2.5 \times 2.5 \times 1.24 \text{ i.e. } 7.75 \text{ M}^3$ Hydraulic Retention Time : 7.75 / 0.640 i.e. 12.12 s

3.0 MECHANICAL COARSE BAR SCREEN CHANNEL

No. : 1 (Working)

Material of Construction : RCC, with SS 304 Coarse Bar Screen Design Basis : Year 2041 Peak Flow i.e. 0.640 M³/s

Angle of Inclination : 80° Length : 4.5 MSide Water Depth : 1.2 M

Inclined Submerged Screen : $(1.2 / \sin 80^{\circ})$ i.e. 1.22 M

Length

Velocity (through Screen : 1.0 M/s

at Peak Flow, NIL Clogging)

Clear Width : $0.640 \text{ M}^3/\text{s} / (1.22 \text{ M} \text{ x} 1.0 \text{ M/s})$

i.e. 0.525 M : 25 MM

Clear Spacing : 25 MM

No. of Openings : 0.525 M/ 0.025 M

i.e. 20.98, say 21 : 21 + 1 i.e. 22 : 10 MM x 50 MM

Screen Channel Width (Minimum) : $(20 \times 0.025) + (21 \times 0.01)$

i.e. 0.71, say **0.710 M**

Side Margin for Operating : 0.29 M

Mechanism

No. of Bars

Bar Size

Screen Channel Width (Overall) : 0.610 + 0.29 i.e. 1.00 M

Screen Height : SWD(U/s) + FB(U/s) + Conveyor Height +

0.5 M + 0.3 M (Safety Factor) i.e. 1.2+7.039

+0.6+0.5+0.3=9.45 M say 9.5 M

(Minimum)

Head Loss (Design) : 0.15 M

Operation : Automatic (Timer Controlled)
Service : Continuous/ Intermittent

Accessory Equipment : Electric Motor/ Drive Mechanism w/

Mechanical Travelling Rakes/ Control

Panel/ Belt Conveyor (w/ Electric Motor and Drive Arrangement)/ MSEP/ FRP Wheel

Barrows (2 Nos.)

Notes:

1. Due to difficulty associated with underground construction of deep Screen Channels of narrow width, the Screen Channel will be constructed at below Ground Level on a RCC Platform covering portion of the Raw Sewage Collection Sump (Wet Well). The Conveyor Belt will be installed at the Raw Sewage

- Collection Sump (Wet Well) Top of Structure Level i.e. 0.5 M above Ground Level
- 2. Screenings will be mechanically collected on to a Conveyor Belt and then disposed off mechanically by gravity to Wheel Barrow at Ground Level.
- 3. The Belt will start automatically when the Mechanical Screen starts and will stop automatically after a lag period of 60 seconds after the Mechanical Screen stops.
- 4. Height of Screen/ Conveyor Belt are subject to modification depending on Manufacturer Specifications.

Inlet Isolation Sluice Gate

No. : 1

Type : Flange Back Frame Thimble Mounted,

Rising Spindle, Flush Bottom Closure

Design Standard : IS: 13349 Material of Construction : Cast Iron Peak Flow Rate : 0.640 M³/s

Size : 800 MM x 800 MM

Velocity (at Peak Flow) : $0.640 / (0.8 \times 0.8)$ i.e. 1.00 M/s

Operation : Manual

Note: Outlet Isolation Sluice Gates are not required as the screened sewage will directly free fall to Raw Sewage Collection Sump (Wet Well) below the Mechanical Coarse Screen Channel through bottom perforations at the outlet end of the channel.

4.0 MANUAL COARSE BAR SCREEN CHANNEL

No. : 1 (Stand-By)

Material of Construction : RCC, with SS 304 Coarse Bar Screen Design Basis : Year 2041 Peak Flow i.e. 0.640 M³/s

Angle of Inclination : 60° Length : 4.5 MSide Water Depth : 1.2 M

Inclined Submerged Screen : $(1.2 / \sin 60^{\circ})$ i.e. 1.385 M

Length

Velocity (through Screen : 1.0 M/s

at Peak Flow, NIL Clogging)

Clear Width : $0.640 \text{ M}^3/\text{s} / (1.385 \text{ M} \times 1.0 \text{ M/s})$

i.e. 0.462 M

Clear Spacing : 25 MM

No. of Openings : 0.462 M/ 0.025 M

i.e. 18.48, say 19

No. of Bars : 19 + 1 i.e. 20 Bar Size : 10 MM x 50 MM Screen Channel Width : $(19 \times 0.025) + (20 \times 0.01)$

i.e. 0.675,

Consider side margin for Operation : 0.2 M

Total Screen channel width : 0.675 +0.2 i.e. 0.875M say 0.88 M

Screen Height : SWD (U/s) + FB (U/s) i.e. 1.2 + 0.5 = 1.7 M

Head Loss (Design) : 0.15 M
Operation : Manual
Service : Intermittent

Accessory Equipment : MSEP Rakes (2 Nos.)/ Bucket Chain Pulley

Screenings Removal Arrangement

Notes:

1. Due to difficulty associated with underground construction of deep Screen Channels of narrow width, the Screen Channel will be constructed at below Ground Level on a RCC Platform covering portion of the Raw Sewage Collection Sump (Wet Well).

2. Screenings will be manually raked on to a RCC Perforated Platform and then transferred to Raw Sewage Collection Sump (Wet Well) Top of Structure Level through Bucket - Chain Pulley Arrangement and disposed off manually to Hand Cart at Ground Level.

Inlet Isolation Sluice Gate

No. : 1

Type : Flange Back Frame Thimble Mounted,

Rising Spindle, Flush Bottom Closure

Design Standard : IS: 13349 Material of Construction : Cast Iron Peak Flow Rate : 0.640 M³/s

Size : 800 MM x 800 MM

Velocity (at Peak Flow) : $0.640 / (0.8 \times 0.8)$ i.e. 1.00 M/s

Operation : Manual

Note: Outlet Isolation Sluice Gate is not required as the screened sewage will directly free fall to Raw Sewage Collection Sump (Wet Well) below the Mechanical Coarse Screen Channel through bottom perforations at the outlet end of the channel.

5.0 RAW SEWAGE PUMPING STATION

Raw Sewage Collection Sump (Wet Well)

No. : 1
Material of Construction : RCC
Peak Flow Rate : 0.640 M³/s
Hydraulic Retention Time : 7.5 Minutes

(at Peak Flow)

Volume (Required) : 0.640 x 60 x 7.5 i.e. 288 M³

Let Side Water Depth : 2 M
Plan area required for wet well : 144.0 M²
Diameter required for wet well : 13.50 M

Diameter (Provided) : 14.0 M

Volume (Provided) : $\prod/4 \times 14.0 \times 14.0 \times 2 \text{ i.e. } 307.8 \text{ M}^3$ Hydraulic Retention Time : $307.8/(0.640 \times 60) \text{ i.e. } 8.0 \text{ Min, i.e. } \text{OK}$

(at Peak Flow)

Accessory : Ultrasonic Level Sensor (Linked to PLC/

SCADA)

Raw Sewage Transfer Pumps

Nos. : 5 (4 Working + 1 Stand-By – Peak Flow) : 5 (2 Working + 3 Stand By Average Flow)

5 (2 Working + 3 Stand-By –Average Flow)
 Design Basis
 Year 2026 Peak Flow i.e. 1458.0 M³/Hour
 Capacity
 1458.0 / 4 i.e. 364.5 say 365.0 M³/Hour

Discharge Head : 14.0 MWC

Type : Submersible Non Clog, Wet Well

Installation

Operation : Automatic (Controlled by Ultrasonic Level

Sensor, linked to PLC/ SCADA)

Material of Construction

Casing : Cast Iron

Impeller : Stainless Steel ASTM A 743 CF8M

Shaft/ Fasteners/ Foundation Bolts : Stainless Steel 316 Guide Rail : Stainless Steel SS 304

Accessory Equipment : Submersible Electric Motors/ Lifting

Chains/ Guide Rails

Individual Pump Delivery Lines

Size : 300 NB

Design Velocity : $365.0/3600/(\Pi/4 \times 0.3 \times 0.3)$ i.e. 1.44 M/s

Material of Construction : DI K7

Accessory Equipment : Non Return Valve/ Butterfly Valve

(Electrically Actuated)/ Pressure Gauge

Combined Pump Delivery Header

Design Flow : $365.0 \times 4 \text{ i.e. } 1460.0 \text{ M}^3/\text{Hour}$

Size : 700 NB

Design Velocity : $1460.0/3600/(\Pi/4 \times 0.7 \times 0.7)$

i.e. 1.05 M/s

Material of Construction : DI K7

Dry Well

Note: The Dry Well be constructed above the Raw Sewage Collection Sump (Wet Well) and will be used for access to the Submersible Pumps for operation and maintenance as required.

No. :

Material of Construction : RCC Slabs/ Walkways w/ Hand Railing Accessory : 3.0 Ton Capacity Manual Chain Pulley

Hoist with ISMB

Pump House Electric Panel Room

No.

Material of Construction : RCC Slabs/ Columns, Brick Masonry Side

Walls as applicable

Plan Dimensions : 4.0 M x 7.5 M

Height : 4.0 M

Project : Sewerage Network and 22 MLD STP Plant For Hajipur Town

Contractor : Tri-Tech (Beijing) Company Ltd. Beijing (New Delhi)

Doc. Name : Hydraulic Design Calculation for IPS-3

Doc. No. : TT/BEI/HJ/1051/IPS3/A02 REV. 03 DT. 12.03.2014

S.NO.	PARAMETER		VALUE	UNIT
1.0	DESIGN FLOWRATE			
	Peak Flow Rate, Q _P	:	55.296	MLD
		:	2304.000	M³/Hr
		:	0.640	M³/s
2.0	RECEIVING CHAMBER			
	Outfall Sewer to Receiving Chamber Invert Level	:	42.548	M
	Say	:	42.548	M
	Outfall Sewer Diameter	:	1.000	M
	Outfall Sewer Soffit Level	:	43.548	M
	IPS 3 Finished Ground Level (Considered)	:	50.000	M
	Height, Top of Receiving Chamber	:	0.300	M
	Receiving Chamber Top of Structure Level	:	50.300	M
	Outfall Sewer Capacity, Q _P	:	2304.000	M³/Hr
		:	0.640	M³/s
	Sewage Level in Outfall Sewer (Considered)	:	80.000	%
		:	0.800	M
	Outfall Sewer Top Water Level	:	43.348	M
	Outfall Sewer Wetted Cross Section Area, A			
	Triangle Portion			
	Triangle Height, H	:	0.300	M
	Subtended Angle, θ = Cos -1 (H/ (D/2))	:	53.130	0

S.NO.	PARAMETER		VALUE	UNIT
	Triangle Base, B = $((((D/2)^2) - (H^2))^0.5)^2$:	0.800	M
	Triangle Area, A ₁ = 0.5 * H * B	:	0.120	M^2
	Circle Segment Portion			
	Subtended Angle, $\theta_1 = 360^{\circ} - (\theta * 2)$:	253.740	0
	Outfall Sewer Wetted Circular Cross Section Area, A ₂	:	0.554	M^2
	Outfall Sewer Wetted Cross Section Area, $A = A_1 + A_2$:	0.674	M^2
	Outfall Sewer Design Flow Rate, Q _D	:	0.640	M ³ /s
	Outfall Sewer Velocity, V = Q _D / A	:	0.950	M/s
	Velocity Head, V ² /2g	:	0.046	M
	Exit Head Loss Co-Efficient, K	:	1.000	
	Exit Head Loss, K * V ² /2g	:	0.046	M
	Receiving Chamber Top Water Level	:	43.302	M
	Say	:	43.302	M
	Gap, Sewer Pipeline IL - Receiving Chamber IL	:	0.500	M
	Receiving Chamber Invert Level	:	42.048	M
	Receiving Chamber Side Water Depth	:	1.254	M
	Free Board	:	6.998	М
3.0	MECHANICAL COARSE SCREEN CHANNEL			
	Inlet Sluice Gate Width, W	:	0.800	М
	Inlet Sluice Gate Side Water Depth, Z	:	0.800	М
	Velocity (across Sluice Gate), $V = Q_P / W^*Z$:	1.000	M/s
	Velocity Head V ² / 2g	:	0.051	М
	kkkm	:	0.800	
	Head Loss across Sluice Gate, K * V ² / 2g	:	0.041	M
	Say	:	0.041	M
	Coarse Screen Channel Top Water Level (U/s)	:	43.261	M
	Say	:	43.261	

S.NO.	PARAMETER		VALUE	UNIT
	Coarse Screen Channel Invert Level	:	42.048	М
	Coarse Screen Channel Side Water Depth (U/s)	:	1.213	M
	Head Loss across Coarse Screen (Refer Process Calculations)	:	0.150	M
	Coarse Screen Channel Top Water Level (D/s)	:	43.111	M
	Free Board (To Top of Screen Channel)	:	0.500	М
	Coarse Screen Channel Top of Structure Level	:	43.761	M
	Wet Well Top of Structure Level	:	50.300	M
	Free Board (To Top of Wet Well)	:	7.039	M
	Say	:	7.039	M
	IPS 3 Finished Ground Level	:	50.000	M
4.0	RAW SEWAGE SUMP (WET WELL)			
	Coarse Screen Channel Invert Level	:	42.048	M
	Free Fall, Fine Screen Channel IL - Raw Sewage Sump TWL	:	0.300	M
	Raw Sewage Sump Top Water Level	:	41.748	M
	Raw Sewage Sump Side Water Depth	:	2.000	M
	Raw Sewage Sump Invert Level	:	39.748	M
	Finished Ground Level	:	50.000	М
	Dry Well Plinth Level	:	50.300	M
	Height, Dry Well Plinth Level (Above Ground)	:	0.850	M
	Raw Water Sump Top of Structure Level	:	50.300	M
	Raw Water Sump Free Board	:	8.552	M

Project : Sewerage Network and 22 MLD STP Plant For Hajipur Town

: Tri-Tech (Beijing) Company Ltd. Beijing (New Delhi) Contractor

: IPS-3 Plant Automation Philosophy Doc. Name

Doc. No. : TT/BEI/HJ/1051/IPS3/A03 **REV. 02** DT. 18.09.2013

(Refer Process & Instrumentation Diagram Drawing No. TT/BEI/HJ/1051/IPS3/A07).

GENERAL DESCRIPTION

Each Electrical Drive of the Intermediate Pumping Station can be controlled as follows:

- 1.0 Through Local Push Button START/ STOP Station installed locally near the drive when in LOCAL Mode.
- 2.0 Through the Motor Control Center (MCC).
- 3.0 Through PLC/ SCADA installed in the Control Room when MCC is in REMOTE Mode. In REMOTE MANUAL Mode the Electrical Drive can be operated manually through Soft Keys on the SCADA Screen. In REMOTE AUTO Mode the Electrical Drive will START/ STOP automatically through software already installed in the PLC.

Details of Plant Automation pertaining to specific units are as follows:

MECHANICAL SCREEN CHANNEL

- 1.0 Inlet Gate will be manually operated.
- 2.0 Mechanical Coarse Screen/Conveyor Belt will be Timer Operated. Timer setting will be 0 – 30 minutes for Cycle time 30 minutes. Conveyor Belt will automatically stop after a Lag Period of 60 seconds following Mechanical Screen Stop.

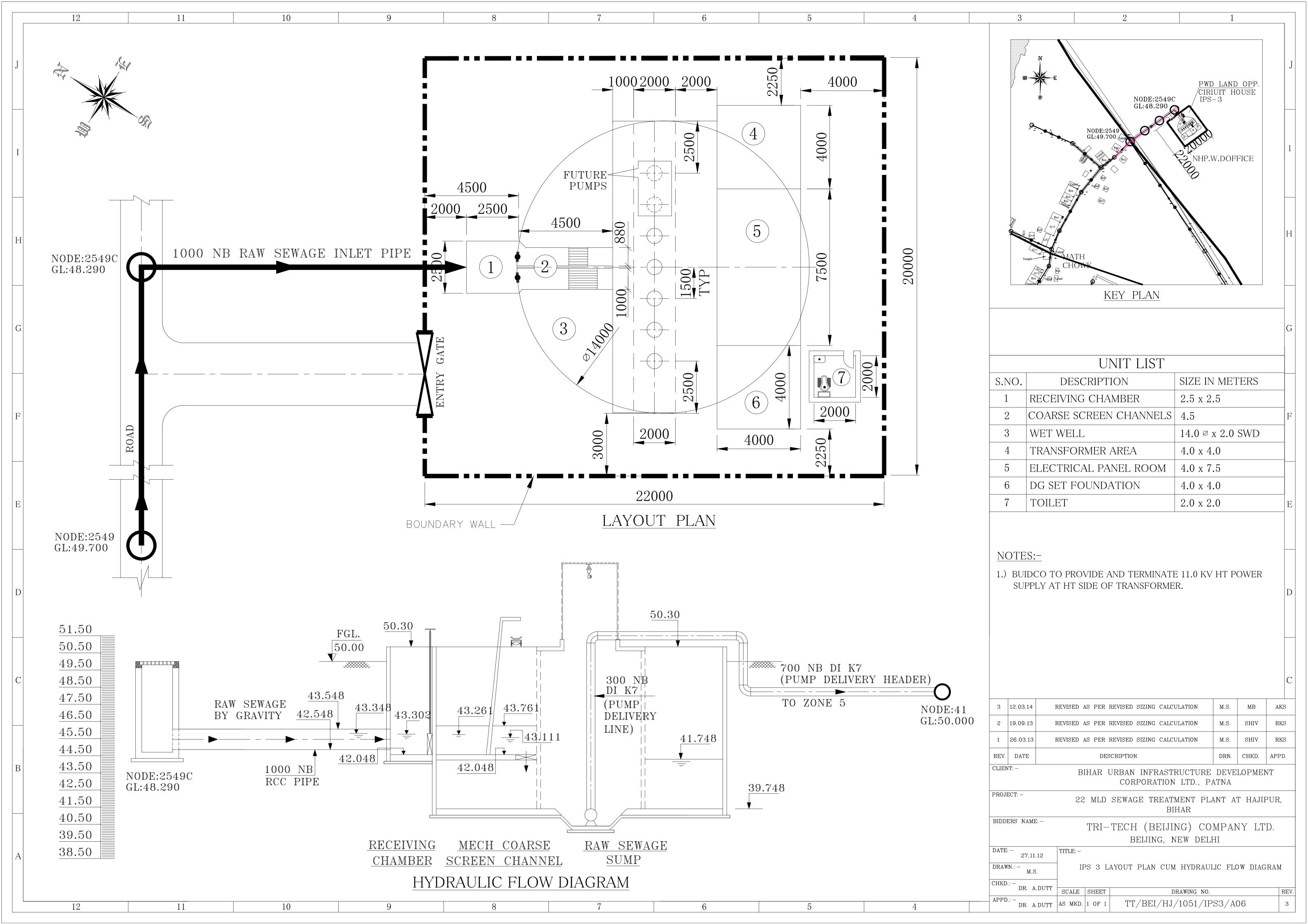
RAW SEWAGE SUMP WET WELL

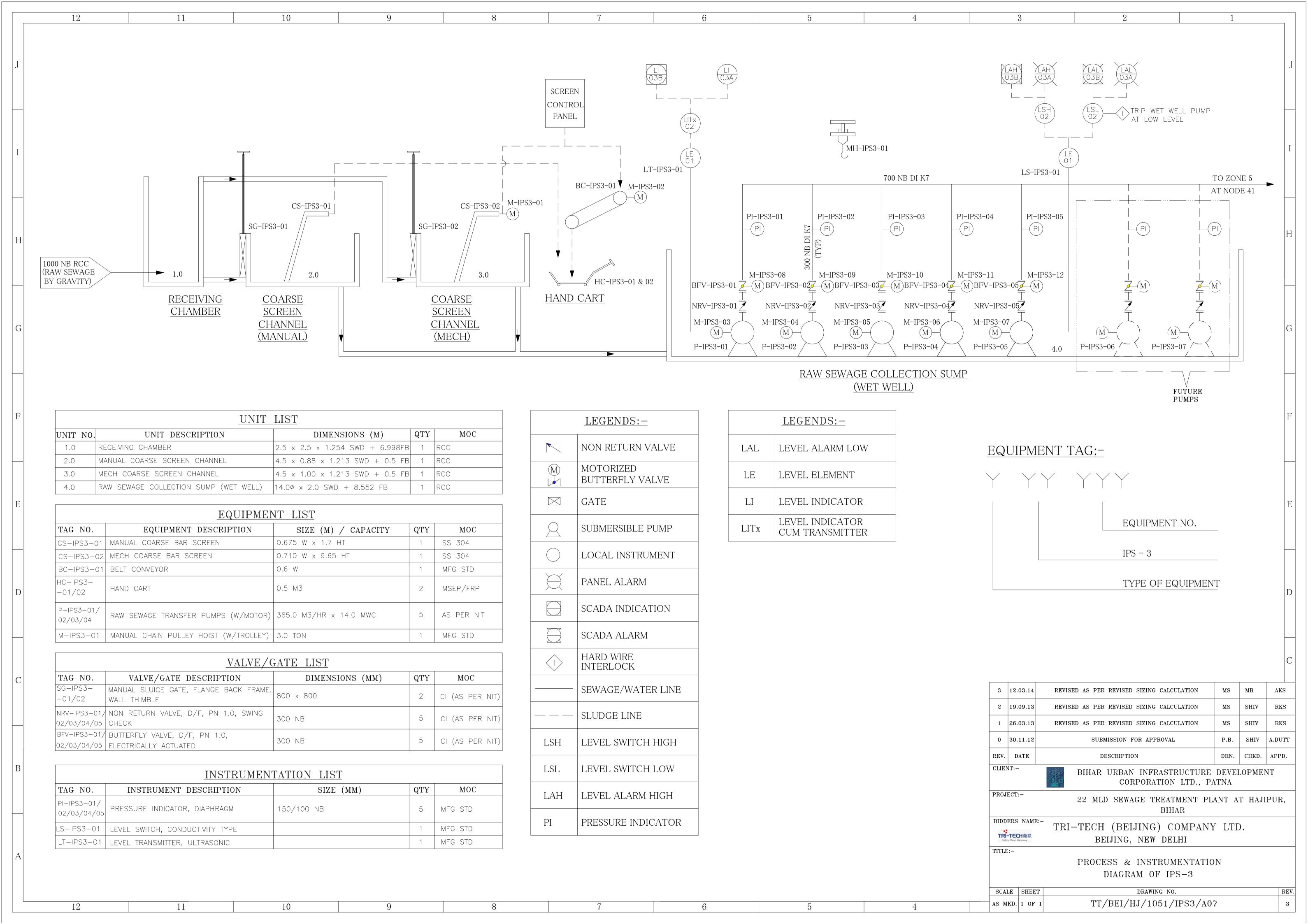
- 1.0 Raw Sewage Transfer Pumps will be operated through PLC SCADA linked to Ultrasonic Level Sensor. During rising Sump Level 1 No. Raw Sewage Transfer Pump will come in to operation at Low Level 1 of the Sump Wet Well. A second Pump will come in to operation at Low Level 2. A third Pump will come in to operation at High Level 1. A fourth Pump will come in to operation at High Level 2. The operating sequence of the Raw Sewage Transfer Pumps will be rotated weekly through PLC SCADA. During decreasing Sump Level the operating sequence will be reversed.
- 2.0 Individual Pump Delivery Electrically Actuated Butterfly Valves will automatically OPEN at PUMP START and automatically CLOSE at PUMP STOP.

- 3.0 Pump(s) in operation will be tripped automatically through Level Switch Hard Wire Interlock at Low Low Level in the Sump Wet Well.
- 4.0 Alarm will sound in the Control Panel at Sump Wet Well High High Level and Low Low Level activated by Ultrasonic Level Sensor.
- 5.0 Alarm will sound in the Control Panel at Sump Wet Well High High Level and Low Low Level activated by Level Switch.

Project : Sewerage Network and 22 MLD STP Plant For Hajipur Town

Contractor: Tri-Tech (Beijing) Company Ltd. Beijing (New Delhi)


Doc. Name: Pumping Head Calculations for Raw Sewage Transfer Pumps IPS-3


Doc. No. : TT/BEI/HJ/1051/IPS3/A05 REV. 03 DT. 12.03.2014

S.NO.	PARAMETER		VALUE	UNIT
1.0	Individual Pump Flow Rate, Q	:	365.000	M³/Hr
		:	0.101	M^3/s
	Total Nos. Pumps	:	5.000	
	Nos. Pumps Working	:	4.000	
	Nos. Pumps Stand-By	:	1.000	
	Combined Pump Flow Rate	:	1460.000	M ³ /Hr
		:	0.406	M^3/s
2.0	STATIC HEAD CALCULATION			
	Raw Sewage Sump IL	:	39.748	М
	Receiving Manhole N-41 Ground Level	:	50.000	М
	Static Head	:	10.252	М
3.0	PIPE FRICTION LOSS - 300 NB DI K7 INDIVIDUAL DE	LIVERY		
	Pump Flow Rate, Q	:	0.101	M ³ /s
	Pump Delivery Pipeline Diameter, D	:	0.300	М
	Pump Delivery Pipeline Length (Max), L	:	10.000	М
	Pipe Velocity, $V = Q/(\Pi^*D^*D/4)$ Hazen William Equation, $V = 0.849 * C * R^{0.63} * S^{0.54}$:	1.434	M/s
	Hazen William Co-Efficient, C (CPHEEO Manual)	:	100.000	
	Hydraulic Radius, R = D/4	:	0.075	М
	Friction Slope, S (by Calculation)	:	0.01072	M/M
	Pipe Friction Loss, $H_F = S * L$:	0.107	М
4.0	PIPE FRICTION LOSS - 700 NB DI K7 COMMON DELI	VERY HE	ADER	
	Pump Flow Rate, Q	:	0.406	M ³ /s
	Pump Delivery Pipeline Diameter, D	:	0.700	М

S.NO.	PARAMETER		VALUE	UNIT
	Pump Delivery Pipeline Length (Max), L	:	750.000	M
	Pipe Velocity, $V = Q/(\Pi^*D^*D/4)$:	1.054	M/s
	Hazen William Equation, $V = 0.849 * C * R^{0.63} * S^{0.54}$			
	Hazen William Co-Efficient, C (CPHEEO Manual)	:	140.000	
	Hydraulic Radius, R = D/4	:	0.175	M
	Friction Slope, S (by Calculation)	:	0.00121	M/M
	Pipe Friction Loss, $H_F = S * L$:	0.907	M
5.0	FITTINGS LOSSES - PUMP SUCTION			
	Pump Flow Rate, Q	:	0.101	M ³ /s
	Pump Suction Diameter, D	:	0.300	M
	Suction Velocity V = $Q/(\Pi/4*D*D)$:	1.434	M/s
	Velocity Head = $V^2/2g$:	0.105	M
	Entrance Loss Co-Efficient, K	:	0.500	
	Pump Suction Fittings Losses = K * V ² /2g	:	0.052	M
6.0	FITTINGS LOSSES - 300 NB DI K7 INDIVIDUAL PUMP	DELIVE	RY	
	Pump Flow Rate, Q	:	0.101	M ³ /s
	Pump Delivery Pipeline Diameter, D	:	0.300	M
	Delivery Velocity $V = Q/(\prod/4*D*D)$:	1.434	M/s
	Velocity Head = $V^2/2g$:	0.105	M
	Loss Co-Efficient, Reducer 200 NB - 150 NB, K ₁	:	1.000	
	Loss Co-Efficient, 90 ⁰ Bends, K ₂	:	1.000	
	Nos. 90 ⁰ Bends, N	:	2.000	
	Loss Co-Efficient Non Return Valve, K ₄	:	2.500	
	Loss Co-Efficient Butterfly Valve, K ₅	:	1.000	
	Total Loss Co-Efficient $K = (K_1 + N^*K_2 + K4 + K5)$:	6.500	
	Pump Delivery Fittings Losses = $K * V^2/2g$:	0.681	M
7.0	FITTINGS LOSSES - 700 NB DI K7 COMMON DELIVER	RY HEAD	ER	
	Pump Flow Rate, Q	:	0.406	M ³ /s
	Pump Delivery Pipeline Diameter, D	:	0.700	М
	Delivery Velocity V = $Q/(\Pi/4*D*D)$:	1.054	M/s
	Velocity Head = $V^2/2g$:	0.057	M

S.NO.	PARAMETER		VALUE	UNIT
	Loss Co-Efficient, 90 ⁰ / 45 ⁰ Bends, K ₂	:	1.000	
	Nos. 90 ⁰ Bends, N (Max) Exit Loss Co-Efficient, K ₆	:	8.000 1.000	
	K6)	:	9.000	
	Pump Delivery Fittings Losses = K * V ² /2g	:	0.509	M
7.0	TOTAL HEAD LOSS CALCULATION			
	Total Head Loss = Static Head + Friction Loss + Suction		40.500	
	Fittings Loss + Delivery Fittings Loss	:	12.509	М
	Pump Delivery Head with considering 10% margin	:	13.760	M
	Pump Delivery Head (Provided)	:	14.000	М

Project: Sewerage Network and 22 MLD STP Plant For Hajipur Town

Contractor: Tri-Tech (Beijing) Company Ltd. Beijing (New Delhi)

Doc. Name: Pumping Head Calculations for Raw Sewage Transfer Pumps IPS-4

Doc. No. : TT/BEI/HJ/1051/IPS4/A05 REV. 03 DT. 09.07.2013

JOC. NO) I I/DEI/NJ/1031/IP34/A03	KEV. 03	D1. 09.07.2013
S.NO.	PARAMETER	VALUE	UNIT
1.0	Individual Pump Flow Rate, Q	: 142.000	M ³ /Hr
		: 0.039	M^3/s
	Total Nos. Pumps	: 5.000	nos.
	Nos. Pumps Working	: 4.000	nos.
	Nos. Pumps Stand-By	: 1.000	nos.
	Combined Pump Flow Rate (for year 2026)	: 568.000	M ³ /Hr
		: 0.158	M³/s
2.0	STATIC HEAD CALCULATION		
	Raw Sewage Sump IL	: 40.313	M
	Receiving Manhole N-2322B Ground Level	: 47.984	М
	Static Head	: 7.671	M
3.0	PIPE FRICTION LOSS - 200 NB DI K7 INDIVIDUAL	DELIVERY	
	Pump Flow Rate, Q	: 0.039	M ³ /s
	Pump Delivery Pipeline Diameter, D	: 0.200	М
	Pump Delivery Pipeline Length (Max), L	: 10.000	М
	Pipe Velocity, $V = Q/(\Pi^*D^*D/4)$ Hazen William Equation, $V = 0.849 * C * R^{0.63} * S^{0.54}$: 1.255	M/s
	Hazen William Co-Efficient, C (CPHEEO Manual)	: 140.000	
	Hydraulic Radius, R = D/4	: 0.050	М
	Friction Slope, S (by Calculation)	: 0.00721	M/M
	Pipe Friction Loss, $H_F = S * L$: 0.072	M
4.0	PIPE FRICTION LOSS - 400 NB DI K7 COMMON DE	ELIVERY HEADER	
	Pump Flow Rate, Q	: 0.158	M³/s
	Pump Delivery Pipeline Diameter, D	: 0.400	М
	Pump Delivery Pipeline Length (Max), L	: 1600.000	M
	Pipe Velocity, $V = Q/(\Pi^*D^*D/4)$: 1.255	M/s
	Hazen William Equation, $V = 0.849 * C * R^{0.63} * S^{0.54}$		
	Hazen William Co-Efficient, C (CPHEEO Manual)	: 140.000	
	Hydraulic Radius, R = D/4	: 0.100	M
	Friction Slope, S (by Calculation)	: 0.00321	M/M
	Pipe Friction Loss, $H_F = S * L$	5.141	M

S.NO.	PARAMETER		VALUE	UNIT
5.0	FITTINGS LOSSES - PUMP SUCTION			
	Pump Flow Rate, Q	:	0.039	M ³ /s
	Pump Suction Diameter, D	:	0.200	M
	Suction Velocity $V = Q/(\prod/4*D*D)$:	1.255	M/s
	Velocity Head = $V^2/2g$:	0.080	M
	Entrance Loss Co-Efficient, K	:	0.500	
	Pump Suction Fittings Losses = $K * V^2/2g$:	0.040	М
6.0	FITTINGS LOSSES - 200 NB DI K7 INDIVIDUAL P	UMP DE	LIVERY	
	Pump Flow Rate, Q	:	0.039	M ³ /s
	Pump Delivery Pipeline Diameter, D	:	0.200	M
	Delivery Velocity $V = Q/(\prod/4*D*D)$:	1.255	M/s
	Velocity Head = $V^2/2g$:	0.080	М
	Loss Co-Efficient, Reducer 200 NB - 150 NB, K ₁	:	1.000	
	Loss Co-Efficient, 90 ⁰ Bends, K ₂	:	1.000	
	Nos. 90 ⁰ Bends, N	:	2.000	
	Loss Co-Efficient Non Return Valve, K ₄	:	2.500	
	Loss Co-Efficient Butterfly Valve, K ₅	:	1.000	
	Total Loss Co-Efficient $K = (K_1 + N^*K_2 + K4 + K5)$:	6.500	
	Pump Delivery Fittings Losses = $K * V^2/2g$:	0.522	М
7.0	FITTINGS LOSSES - 400 NB DI K7 COMMON DEL	IVERY I	HEADER	
	Pump Flow Rate, Q	:	0.158	M ³ /s
	Pump Delivery Pipeline Diameter, D	:	0.400	М
	Delivery Velocity $V = Q/(\prod/4*D*D)$:	1.26	M/s
	Velocity Head = $V^2/2g$:	0.080	М
	Loss Co-Efficient, 90 ⁰ / 45 ⁰ Bends, K ₂	:	1.000	
	Nos. 90 ⁰ Bends, N (Max)	:	30.000	
	Exit Loss Co-Efficient, K ₆	:	1.000	
	K5 + K6)	:	31.000	
	Pump Delivery Fittings Losses = $K * V^2/2g$:	2.490	M
7.0	TOTAL HEAD LOSS CALCULATION			
	Total Head Loss = Static Head + Friction Loss +			
	Suction Fittings Loss + Delivery Fittings Loss	:	15.937	М
	Pump Delivery Head with 10% margin	:	17.530	М
	Pump Delivery Head (Provided)	:	18.000	M
	Pumping KW rating		10.709	

Project : Sewerage Network and 22 MLD STP Plant For Hajipur Town

Contractor: Tri-Tech (Beijing) Company Ltd. Beijing (New Delhi)

Doc. Name : Hydraulic Design Calculation for IPS-4

Doc. No. : TT/BEI/HJ/1051/IPS4/A02 REV. 03 DT. 02.07.2013

1.0 DESIGN FLOWRATE Peak Flow Rate, Qp : 16.848 MLD : 702.000 M³/hr : 0.195 M³/s	S.NO.	PARAMETER		VALUE	UNIT
1908 1909	1.0	DESIGN FLOWRATE			
### 10.195 M3/s ### 2.0 RECEIVING CHAMBER Outfall Sewer to Receiving Chamber Invert Level : 42.913 M Say : 42.913 M Outfall Sewer Diameter : 0.700 M Outfall Sewer Soffit Level : 43.613 M IPS 4 Finished Ground Level (Considered) : 50.000 M Height, Top of Receiving Chamber (Above Ground) : 1.000 M Receiving Chamber Top of Structure Level : 51.000 M Outfall Sewer Capacity, Qp : 702.000 M3/Hr Sewage Level in Outfall Sewer (Considered) : 80.000 % Outfall Sewer Top Water Level : 43.473 M Outfall Sewer Wetted Cross Section Area, A Triangle Portion Triangle Height, H : 0.210 M		Peak Flow Rate, Q _P	:	16.848	MLD
2.0 RECEIVING CHAMBER Outfall Sewer to Receiving Chamber Invert Level : 42.913 M Say : 42.913 M Outfall Sewer Diameter : 0.700 M Outfall Sewer Soffit Level : 43.613 M IPS 4 Finished Ground Level (Considered) : 50.000 M Height, Top of Receiving Chamber (Above Ground) : 1.000 M Receiving Chamber Top of Structure Level : 51.000 M Outfall Sewer Capacity, Qp : 702.000 M³/Hr Example Level in Outfall Sewer (Considered) : 80.000 % Outfall Sewer Top Water Level : 43.473 M Outfall Sewer Wetted Cross Section Area, A Triangle Portion Triangle Height, H : 0.210 M			:	702.000	M³/Hr
Outfall Sewer to Receiving Chamber Invert Level : 42.913 M Say : 42.913 M Outfall Sewer Diameter : 0.700 M Outfall Sewer Soffit Level : 43.613 M IPS 4 Finished Ground Level (Considered) : 50.000 M Height, Top of Receiving Chamber (Above Ground) : 1.000 M Receiving Chamber Top of Structure Level : 51.000 M Outfall Sewer Capacity, Qp : 702.000 M³/Hr Sewage Level in Outfall Sewer (Considered) : 80.000 % Outfall Sewer Top Water Level : 43.473 M Outfall Sewer Wetted Cross Section Area, A Triangle Portion Triangle Height, H : 0.210 M			:	0.195	M ³ /s
Say : 42.913 M Outfall Sewer Diameter : 0.700 M Outfall Sewer Soffit Level : 43.613 M IPS 4 Finished Ground Level (Considered) : 50.000 M Height, Top of Receiving Chamber (Above Ground) : 1.000 M Receiving Chamber Top of Structure Level : 51.000 M Outfall Sewer Capacity, Qp : 702.000 M³/Hr : 0.195 M³/s Sewage Level in Outfall Sewer (Considered) : 80.000 % Outfall Sewer Top Water Level : 43.473 M Outfall Sewer Wetted Cross Section Area, A Triangle Portion Triangle Height, H : 0.210 M	2.0	RECEIVING CHAMBER			
Outfall Sewer Diameter : 0.700 M Outfall Sewer Soffit Level : 43.613 M IPS 4 Finished Ground Level (Considered) : 50.000 M Height, Top of Receiving Chamber (Above Ground) : 1.000 M Receiving Chamber Top of Structure Level : 51.000 M Outfall Sewer Capacity, Q _P : 702.000 M ³ /Hr		Outfall Sewer to Receiving Chamber Invert Level	:	42.913	М
Outfall Sewer Soffit Level : 43.613 M IPS 4 Finished Ground Level (Considered) : 50.000 M Height, Top of Receiving Chamber (Above Ground) : 1.000 M Receiving Chamber Top of Structure Level : 51.000 M Outfall Sewer Capacity, Qp : 702.000 M³/Hr : 0.195 M³/s Sewage Level in Outfall Sewer (Considered) : 80.000 % Outfall Sewer Top Water Level : 43.473 M Outfall Sewer Wetted Cross Section Area, A Triangle Portion Triangle Height, H : 0.210 M		Say	:	42.913	М
IPS 4 Finished Ground Level (Considered) : 50.000 M Height, Top of Receiving Chamber (Above Ground) : 1.000 M Receiving Chamber Top of Structure Level : 51.000 M Outfall Sewer Capacity, Q _P : 702.000 M ³ /Hr : 0.195 M ³ /s Sewage Level in Outfall Sewer (Considered) : 80.000 % : 0.560 M Outfall Sewer Top Water Level : 43.473 M Outfall Sewer Wetted Cross Section Area, A Triangle Portion Triangle Height, H : 0.210 M		Outfall Sewer Diameter	:	0.700	М
Height, Top of Receiving Chamber (Above Ground) : 1.000 M Receiving Chamber Top of Structure Level : 51.000 M Outfall Sewer Capacity, Q _P : 702.000 M ³ /Hr : 0.195 M ³ /s Sewage Level in Outfall Sewer (Considered) : 80.000 % : 0.560 M Outfall Sewer Top Water Level : 43.473 M Outfall Sewer Wetted Cross Section Area, A Triangle Portion Triangle Height, H : 0.210 M		Outfall Sewer Soffit Level	:	43.613	М
Receiving Chamber Top of Structure Level : 51.000 M Outfall Sewer Capacity, Q _P : 702.000 M³/Hr : 0.195 M³/s Sewage Level in Outfall Sewer (Considered) : 80.000 % : 0.560 M Outfall Sewer Top Water Level : 43.473 M Outfall Sewer Wetted Cross Section Area, A Triangle Portion Triangle Height, H : 0.210 M		IPS 4 Finished Ground Level (Considered)	:	50.000	М
Outfall Sewer Capacity, Q _P : 702.000 M³/Hr : 0.195 M³/s Sewage Level in Outfall Sewer (Considered) : 80.000 % : 0.560 M Outfall Sewer Top Water Level : 43.473 M Outfall Sewer Wetted Cross Section Area, A Triangle Portion Triangle Height, H : 0.210 M		Height, Top of Receiving Chamber (Above Ground)	:	1.000	М
: 0.195 M³/s Sewage Level in Outfall Sewer (Considered) : 80.000 % : 0.560 M Outfall Sewer Top Water Level : 43.473 M Outfall Sewer Wetted Cross Section Area, A Triangle Portion Triangle Height, H : 0.210 M		Receiving Chamber Top of Structure Level	:	51.000	М
Sewage Level in Outfall Sewer (Considered) : 80.000 % : 0.560 M Outfall Sewer Top Water Level : 43.473 M Outfall Sewer Wetted Cross Section Area, A Triangle Portion Triangle Height, H : 0.210 M		Outfall Sewer Capacity, Q _P	:	702.000	M ³ /Hr
: 0.560 M Outfall Sewer Top Water Level : 43.473 M Outfall Sewer Wetted Cross Section Area, A Triangle Portion Triangle Height, H : 0.210 M			:	0.195	M ³ /s
Outfall Sewer Top Water Level : 43.473 M Outfall Sewer Wetted Cross Section Area, A Triangle Portion Triangle Height, H : 0.210 M		Sewage Level in Outfall Sewer (Considered)	:	80.000	%
Outfall Sewer Wetted Cross Section Area, A Triangle Portion Triangle Height, H : 0.210 M			:	0.560	М
Triangle Portion Triangle Height, H : 0.210 M		Outfall Sewer Top Water Level	:	43.473	М
Triangle Height, H : 0.210 M		Outfall Sewer Wetted Cross Section Area, A			
		Triangle Portion			
		Triangle Height, H	:	0.210	М
Subtended Angle, θ = Cos -1 (H/ (D/2)) : 53.130		Subtended Angle, θ = Cos -1 (H/ (D/2))	:	53.130	0

Triangle Base, $B = ((((D/2)^2) - (H^2))^0.5)^2$:	0.560	М
Triangle Area, A ₁ = 0.5 * H * B	:	0.059	M^2
Circle Segment Portion			
Subtended Angle, $\theta_1 = 360^{\circ} - (\theta * 2)$:	253.740	0
Outfall Sewer Wetted Circular Cross Section Area, A ₂	:	0.271	M^2
Outfall Sewer Wetted Cross Section Area, $A = A_1 + A_2$:	0.330	M^2
Outfall Sewer Design Flow Rate, Q _D	:	0.195	M ³ /s
Outfall Sewer Velocity, $V = Q_D / A$:	0.591	M/s
Velocity Head, V ² /2g	:	0.018	М
Exit Head Loss Co-Efficient, K	:	1.000	
Exit Head Loss, K * V ² /2g	:	0.018	М
Receiving Chamber Top Water Level	:	43.455	М
Say	:	43.455	М
Gap, Sewer Pipeline IL - Receiving Chamber IL	:	0.300	М
Receiving Chamber Invert Level	:	42.613	М
Receiving Chamber Side Water Depth	:	0.842	М
Free Board	:	7.545	М
MECHANICAL COARSE SCREEN CHANNEL			
Inlet Sluice Gate Width, W	:	0.450	М
Inlet Sluice Gate Side Water Depth, Z	:	0.450	М
Velocity (across Sluice Gate), $V = Q_P / W^*Z$:	0.963	M/s
Velocity Head V ² / 2g	:	0.047	М
Sluice Gate Head Loss Co-Efficient	:	0.800	
Head Loss across Sluice Gate, K * V ² / 2g	:	0.038	М
Say	:	0.050	М
Coarse Screen Channel Top Water Level (U/s)	:	43.405	М
Say	:	43.405	

3.0

	Coarse Screen Channel Invert Level	:	42.613	М
	Coarse Screen Channel Side Water Depth (U/s)	:	0.792	М
	Say		0.792	
	Head Loss across Coarse Screen (Maxi)	:	0.150	М
	Coarse Screen Channel Top Water Level (D/s)	:	43.255	М
	Free Board (To Top of Screen Channel)	:	0.500	М
	Coarse Screen Channel Top of Structure Level	:	43.905	М
	Wet Well Top of Structure Level	:	51.000	М
	Free Board (To Top of Wet Well)	:	7.595	М
	IPS 4 Finished Ground Level	:	50.000	М
4.0	RAW SEWAGE SUMP (WET WELL)			
4.0	RAW SEWAGE SUMP (WET WELL) Coarse Screen Channel Invert Level	:	42.613	М
4.0	, , ,	:	42.613 0.300	M M
4.0	Coarse Screen Channel Invert Level	: :		
4.0	Coarse Screen Channel Invert Level Free Fall, Fine Screen Channel IL - Raw Sewage Sump TWL	: : :	0.300	М
4.0	Coarse Screen Channel Invert Level Free Fall, Fine Screen Channel IL - Raw Sewage Sump TWL Raw Sewage Sump Top Water Level	: : : :	0.300 42.313	M M
4.0	Coarse Screen Channel Invert Level Free Fall, Fine Screen Channel IL - Raw Sewage Sump TWL Raw Sewage Sump Top Water Level Raw Sewage Sump Side Water Depth	: : : :	0.300 42.313 2.000	M M M
4.0	Coarse Screen Channel Invert Level Free Fall, Fine Screen Channel IL - Raw Sewage Sump TWL Raw Sewage Sump Top Water Level Raw Sewage Sump Side Water Depth Raw Sewage Sump Invert Level	: : : : :	0.300 42.313 2.000 40.313	M M M
4.0	Coarse Screen Channel Invert Level Free Fall, Fine Screen Channel IL - Raw Sewage Sump TWL Raw Sewage Sump Top Water Level Raw Sewage Sump Side Water Depth Raw Sewage Sump Invert Level Finished Ground Level	: : : : :	0.300 42.313 2.000 40.313 50.000	M M M M

Project: DESIGNING PROVIDING LAYING TESTING & COMMISSIONING SEWERAGE

PROJECT ON TURNKEY BASIS AT HAJIPUR TOWN

Client: Bihar Urban Infrastructure Development Corporation.

			09.07.
			03.07.
Design Avg. flow for year 2041 (Qa)		327.6	m3/hr
		0.091	m3/sec
Design Peak flow for year 2041 (Qp)		702	m3/hr
		0.195	m3/sec
Maximum water depth (Wd)		0.792	М
Bar spacing (as per NIT) - Bs		25	mm
Bar size (Width) -Bt		10	mm
Screen inclination - θ		80	Deg
Channel width (provided) as per sizing calculation)Cw)		0.6	m
Screen Width provided (refer Sizing calculation for IPS-4) (Sw)		0.3	m
Clogging factor (Cf)		30%	
Coefficeint of discharge(C)		0.7	
Gravitational acceleration (g)		9.81	
Head loss through the clossed screen desired		150	mm
HYDRAULICS CALCULATION:			
Let Velocity through screen		1	m/sec
So clear width required		0.2	m
No. of opening		9.85	nos.
	say	10.00	
No. of Bars		11.00	nos
nclined Submerged Screen length (Li)		0.804	
/elocity in channel at avg flow (Va)		0.19	
/elocity in channel at Peak flow (Vp)		0.41	
Clear area of screen at No clogging condition (Ac)		0.20	m2
/elocity throught screen at peak flow (Vs1)		0.97	m2/sec
Head loss calculation: by using Bernoulli Equation (HI1)			
((1/(c*2g))*(Vs12-Vp2)		0.056	m
/elocity through screen at 30% clogged condition (Vs2)		56 1.39	mm m/sec
relocity through screen at 30% clogged condition (vs2)		1.33	111/350
Head loss calculation at 30 % clogged condition ((1/c*2g*(Vs2^2-Vp^2))		0.128	m
(17)0 58 (425 5 Ab 5))		128	mm < 150mi
	Hence		

			IPS - 4					
Head Calculation			Inter flow	Ultimate Flow	Inter flow	Ultimate Flow		
Frictional Losses due to fittings (H2) = K	(V2/2g		for	350	For	400	for	450
H2 = head loss, m								
K = co-efficient for bends								
K for bends		=	0.32	0.32	0.32	0.32	0.32	0.32
K for valves		=	0.8	0.8	0.8	0.8	0.8	3.0
K for NRV		=	2.5	2.5	2.5	2.5	2.5	2.5
K for Expander		=	0.5	0.5	0.5	0.5	0.5	0.5
g = gravitational force	m/sec2	=	9.8	9.8	9.8	9.8	9.8	9.8
No. of bends		=	6	6	6	6	6	6
No. of valves		=	1	1	1	1	1	1
No. of NRVs		=	1	1	1	1	1	1
No. of Expander		=	1	1	1	1	1	1
V, velocity through pipe	m/sec	=	1.61	2.028	1.23	1.553	0.98	1.227
Total head loss for fittings (H2)	m	=	0.758	1.200	0.444	0.703	0.277	0.439
Frictional loss in pipe length (H1)		=						
$FL = \{6.815 \times (V/C)^{1.852} \times (1/D)^{1.167}\} \times$								
V = Velocity through pipe	m/sec	=	1.61	2.03	1.23	1.55	0.98	1.23
C = Hazen Williams co-efficient		=	140	140	140	140	140	140
D = Dia of Pipe	m	=	0.350	0.350	0.400	0.400	0.450	0.450
Frictional loss in pipe length (H1)	m	=	0.006	0.009	0.003	0.005	0.002	0.003

Project: DESIGNING PROVIDING LAYING TESTING & COMMISSIONING SEWERAGE PROJECT ON TURNKEY BASIS

AT HAJIPUR TOWN

Client: Bihar Urban Infrastructure Development Corporation.

09.07.2013

Economic Size of Pumping Main from IPS 4 to Zone 5 Manhole No 2322B

Volume provided IPS -4 (Provided)	=	157.08 m3		
volume provided if 5 4 (110vided)		107.00 1113		
Average Flow in Present Year	=	2.88 m3/min	172.8	m3/hr
Average Flow in Intermediate Year	=	3.96 m3/min	237.6	m3/hr
Average Flow in Ultimate Year	=	5.46 m3/min	327.6	m3/hr
Peak Flow in Present Year	=	6.66 m3/min	399.6	m3/hr
Peak Flow in Intermediate Year	=	9.30 m3/min	558	m3/hr
Peak Flow in Ultimate Year	=	11.70 m3/min	702	m3/hr
Pumping Rate in the Present	=	6.66 m3/min	399.6	m3/hr
Pumping Rate in the Intermediate	=	9.30 m3/min	558	m3/hr
Pumping Rate in the Ultimate	=	11.70 m3/min	702	m3/hr
Pumping Machinery provided 2026 (Intermediate)	=			
,	Each pump capa.	142 m3/hr		
Totol pumping capacity at avg flow	• • •	426 m3/hr	3W +2SB	
		7.1 m3/min.		
Totol pumping capacity at peak flow		568.00 m3/hr	4W +1SB	
		9.5 m3/min.		
Pumping Machinery provided 2041 (ultimate)	=			
	Each pump capa.	142 m3/hr		
Totol pumping capacity at avg flow		426 m3/hr	3W +4SB	
		7.1 m3/min.		
Totol pumping capacity at peak flow		710.00 m3/hr	5W +2SB	
		11.8 m3/min.		

Flows	Time of Fill (min)	Time of Empty (min)	No of Starts/Hr	No. of pumps Working	Running Time (hr)
Average Flow in Present Year	55	24	1	1.22	29.21
Average Flow in Intermediate Year	40	8	2	1.67	40.16
Average Flow in Ultimate Year	29	7	2	2.31	55.37
Peak Flow in Present Year	24	12	2	2.81	67.54
Peak Flow in Intermediate Year	17	6	3	3.93	94.31
Peak Flow in Ultimate Year	13	3	5	4.94	118.65
real row in Chilinate real	10			11,7 1	110.00

Flows		m3/hr	m3/s	LPS	
Average Flow in Present Year		172.80	0.048	48.00	
Average Flow in Ultimate Year		327.60	0.091	91.00	
Average Flow in Intermediate Year		237.60	0.066	66.00	
Peak Flow in present Year		399.60	0.111	111.00	
Peak Flow in Intermediate Year		558.00	0.155	155.00	
Peak Flow in Ultimate Year		702.00	0.195	195.00	
Pipe dia Calculations					
	Velocity	Flow	Area	Dia	
for present flow	0.8	0.111	0.14	0.420	
for Intermediate flow	1.3	0.155	0.12	0.390	
for Ultimate flow	2.2	0.195	0.09	0.336	
Head Calculation for Raw Sewage pumps					
Raw Sewage Sump Invert Level	=	40.313	m		
GL at Disposing Point (Zone 5 Manhole No 232	22B) =	47.984	m		
Static head (H1)	=	7.6	7 m		

Project:	DESIGNING PROVIDING LAYING TESTING & COMMISSIONING SEWERAGE PROJECT ON TURNKEY BASIS
	AT HAIDUD TOWN

Dia of Pipe in mm	350		400		450	
Area of the Pipe	0.096		0.126		0.159	
Velocity m/sec for present flow	1.15		0.88		0.698	
Velocity m/sec for int flow	1.61		1.23		0.98	
Velocity m/sec for ultimate flow	2.	03	1.55		1.23	
	Int. Period	Ult. Period	Int. Period	Ult. Period	Int. Period	Ult. Period
Flow rate in lps	155.00	195.00	155.00	195.00	155.00	195.00
Frictional Losses in Pipe per m	0.006	0.009	0.003	0.005	0.002	0.003
Pumping Main Length in m	1600.00	1600.00	1600.00	1600.00	1600.00	1600.00
Total Frictional Loss	9.53	14.58	4.97	7.61	2.80	4.29
Static Head	7.67	7.67	7.67	7.67	7.67	7.67
Head loss due to fitting (Station Losses)	0.758	1.200	0.444	0.703	0.277	0.439
Residual Head in m	2.00	2.00	2.00	2.00	2.00	2.00
Total Head in m	19.96	25.45	15.09	17.98	12.75	14.40
Cost of Pipe in Rs.	6847.50	6847.50	7716.25	7716.25	14405.00	14278.75
Total cost of pipe Lakhs	109	9.56	123.46		230.48	
Kw required	46.66	74.85	35.27	52.88	29.81	42.34
cost of pump set in lakhs	14.00	22.45	10.58	15.87	8.94	12.70
Equivalent cost in 2011	14.00	8.14	10.58	5.75	8.94	4.60
Present value of Total Capitalised Pump set Cost	Pump set Cost 22.13 16.33		.33	13.54		
Annual Electrical Charges in Lakhs considering Avg Int flow	34.19	54.85	25.85	38.76	21.84	31.03
Energy cost Capitalised in Lakhs	311.51	499.71	235.49	353.08	199.01	282.69
Present value of Total Capitalised Energy Cost	811.21		588.58		481.69	
Total cost in Lakhs	n Lakhs 942.90		728.37		725.72	

Economic size of pumping main as per velocity = 400 mm
--

Determination of Water Hammer Pressure

Determination of Travel Limitate Lieuwice		
Ultimate Peak Discharge (Q)	=	0.195 m3/s
Diameter of Pipe (d)	=	400 mm
Thickness of Pipe (t)	=	6.3 mm
Modulus of Elasticity of Pipe Material (E)	=	2.1E+10
Bulk Modulus of Water (k)	=	207000000 kg/m3
Cross - Sectional Area of Pipe Line (a)	=	0.126 m2
Normal Velocity in the pipe Line (Vo)	=	1.551 m/s
Velocity of pressure Wave Travel (C.)	=	1425
		1+(kd/Et)
Velocity of pressure Wave	=	1418.03 m/s
Maximum Water hammer, Hmax	=	C Vo/g
		224.36 m

Conclusion:

We recommend 400 mm dia K7 Pipesdue to following reasons:

- 1) Presently we are getting the required minimum velocity which is not possible in 450mm dia.
- 2) In intermediate stage we are getting the required minimum velocity which is not possible in 450mm dia.
- 3) Maximum Operating pressure is 1.8 Kg/cm2 in ultimate stage.
- 4) Class K-7 is capable to with stand the pressure upto 25 kg/cm2 $\,$
- 5) Maximum surge coming to the systemis 22.4 kg/cm2 without any surge protection devises.
- 6) Comparing the maximum surge pressure and design pressure of K-7 its found ok.
- 7) However we are providing 3 nos of air release valves to minimize the surge pressure that will be the extra safety of the system.
- 8) Prize of 450 mm dia pipe not available in bid document, how vere for 400 mm dia pipe prize is available in Bid document.

It is very difficult as well as time consuming to take approval of prise for new size of pipe line which is not include in

bid document.

9) In 400 dia pipe we can gate more optimizing velocity, As per general engineering practice velocity in rising main should not be less than 1m/sec.