Annexure-1

बिहार शहरी आधारभूत संरचना विकास निगम लि० Bihar Urban Infrastructure Development Corporation Ltd.

303, मौर्या टावर / Maurya Tower, बुद्ध मार्ग / Buddh Marg, पटना / Patna- 800 001 दूरभाष / Phone : +91-612-2210101, फेक्स न0/ Fax No. : +91-612-2210103 E-mail : contact@buidco.in, web : http://buidco.in

#/No.:130[D(0/Y0-07/10-V0L-111-1712

To,

Sri Raj Kumar Saini General Manager (Project) Tri-Tech (Beijing) Company Limited Plot No-293, Kehsar Singh Estate West end Marg, Saidula Jab, New Delhi-110030, India

Sub:- Approval of the BEP of STP at Hajipur Sewerage Project.

Sir,

With reference to above mentioned subject we would like to inform you that, the BEP cited above as submitted by you to IIT, BHU has been vetted and approved. We are returning one copy of the approved document. We once again wish to bring to your notice that the indication in the Layout drawing that "Treated Sewerage disposal (by client)" is not acceptable and that the disposal system is within the scope of the contractor.

The indication that "Transformer/HT Switch gear are in BUIDCo Scope of work" is also not acceptable. "BUIDCo to provide LT power connectivity and terminate the same to LT MCC panel" is also to be changed to reflect that the Transformer/HT Switch gear are in the contractor's scope of work and also that BUIDCo will provide HT power line in the campus of STP.

You are requested to take note of the foregoing and carry out further activities of engineering/procurement/ implementation.

Yours sincerely,

Chief General Manao

Uniet General Mahager Buidco, Patna

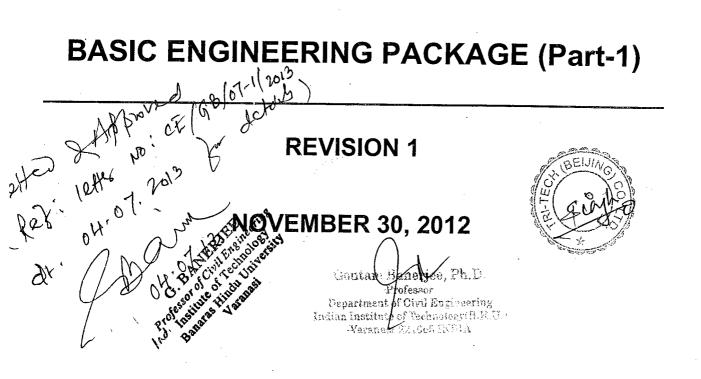
ce: PT

NOTE: GRIGINDL WITH ENGG, COPY SENT TO HAJIPUR. MR RAJOEV RAY

बिहार सरकार का उपक्रम Govt. of Bihar Undertaking BUIDCO Building Better Tomorrow

ISO 9001:2008, 14001:200

दिनाक/Date : 0308/15


Certified Copy of Approved & BEP (Pon issued to contractor BIHAR URBAN INFRASTRUCTURE Gh & DEVELOPMENT CORPORATION LTD., PATNA 3/ 8/2013

SEWERAGE NETWORK AND 22 MLD STP PLANT FOR HAJIPUR TOWN

M/S TRI-TECH (BEIJING) CO. LTD.

INDEX

	Project Name		Hajipur Sewerage and STP, Bihar		
Sl. No	Project No.		1051		
	Doc. No.	Version	Document Description	Pages	Paper Size
1	Sewage Treatment Plant				
1.1	TT/BEI/HJ/1051/STP/A01	00	Treatment Scheme	04	A4
1.2	TT/BEI/HJ/1051/STP/A02	02	Process Design Calculations	21	A4
1.3	TT/BEI/HJ/1051/STP/A02	01	Annexure-1 Sizes of Major Units	02	A4
1.4	TT/BEI/HJ/1051/STP/A03	02	Hydraulic Design Calculations	11	A4
1.5	TT/BEI/HJ/1051/STP/A04	00	Plant Automation Philosophy	03	A4
1.6	TT/BEI/HJ/1051/STP/A05	00	Electrical Load List	02	A4
1.7	TT/BEI/HJ/1051/STP/A06	00	Pumping Head Calculations – Return Sludge Pumps	05	A4
1.8	TT/BEI/HJ/1051/STP/A07	00	Pumping Head Calculations – Centrifuge Feed Pumps	02	A4
1.9	TT/BEI/HJ/1051/STP/A08	02	Layout Plan	01	·A1
1.10	TT/BEI/HJ/1051/STP/A09	01	Hydraulic Flow Diagram	01	A1
1.11	TT/BEI/HJ/1051/STP/A10	01	Process & Instrumentation Diagram	01	A1
1.12	TT/BEI/HJ/1051/STP/A11	00	Single Line Diagram	01	A1
1.13	TT/BEI/HJ/1051/STP/A12	00	Broad specification of mechanical equipment's		A4
1.14	HJ/1051/STP/SURVEY/01	00	Topographical Survey of STP Site	01	A3
1.15	HJ/1051/STP/SURVEY/02	00	Field Survey Dimensional Sketch of STP Site	01	A3
2	Terminal Pumping Station				
2.1	TT/BEI/HJ/1051/TPS/A01	01	Hydraulic Design Calculations	03	A4
2.2	TT/BEI/HJ/1051/TPS/A02	00	Pumping Head Calculations – Raw Sewage Transfer Pumps	03	A4
	·				

Gouten Banerjes, Ph.D. Professor Department of Thvit Engineering Indian Institute of Technology (B.H.U.) . Variation 231005 INPLA

Page 1 of 1

Owner	: Bihar Urban Infrastructure Development Corporation Ltd. Patna			
Project	: Sewerage Network and 22 MLD STP Plant For Hajipur Town			
Contractor	: Tri-Tech (Beijing) Company Ltd. Beijing (New Delhi)			
Doc. Name	: Treatment Scheme for STP			
Doc. No.	: TT/BEI/HJ/1051/STP/A01	REV. 00	DT. 30.11.2012	

SEWAGE TREATMENT PLANT/TERMINAL PUMPING STATION CAPACITY

The Sewage Treatment Plant is designed for a capacity of 22.0 MLD Average Flow i.e. 49.5 MLD Peak Flow corresponding to the projected flow rate for Year 2026. The Terminal Pumping Station is designed for a capacity of 33.0 MLD Average Flow i.e. 74.25 MLD Peak Flow corresponding to the projected flow rate for Year 2041. The total Site Area available for construction is 300.0 M x 130.0 M which is sufficient to construct the proposed 22.0 MLD Sewage Treatment Plant as also an additional 11.0 MLD Sewage Treatment Plant in future.

RAW SEWAGE INTAKE


Raw sewage will be collected and delivered by gravity via 1.2 M Diameter Outfall Sewer having capacity 74.25 MLD (Year 2041 Design Peak Flow) up to the Receiving Chamber of Terminal Pumping Station at STP Site. The Receiving Chamber has been designed for a Hydraulic Retention Time of 12s (approx.) in order to minimize grit deposition at its bottom.

COARSE SCREENING

1 No. Mechanical Coarse Bar Screen (Working) and 1 No. Manual Coarse Bar Screen (Stand-By) each designed for Peak Flow will be provided. Due to difficulty associated with underground construction of deep Screen Channels of narrow width, the Screen Channels will be constructed at below Ground Level on a RCC Platform covering portion of the Raw Sewage Collection Sump (Wet Well).

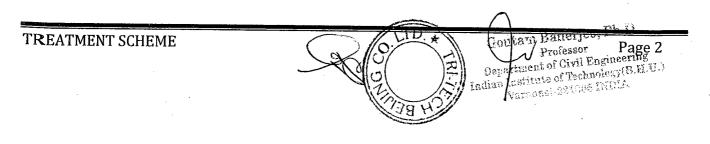
Mechanical coarse screening will be carried out continuously/ intermittently as required. The screen operation will be controlled through Timer installed in the Coarse Screen Control Panel. The screenings will be lifted mechanically and dropped in to a Conveyor Belt and finally discharged on to a Wheel Barrow at ground level. The Coarse Bar Screen Channels will be provided with Manual Inlet Isolation Sluice Gates. Outlet Isolation Sluice Gates will not be required as the screened sewage will directly free fall to Raw Sewage Collection Sump (Wet Well) below the Coarse Screen Channels through bottom perforations at the outlet end of the channel. Manual coarse screening will be carried out only during emergency in case the Mechanical Coarse Bar Screen is under maintenance. Manual Screenings will be manually

TREATMENT SCHEME

raked on to a RCC Perforated Platform and then transferred to Raw Sewage Collection Sump (Wet Well) Top of Structure Level through Bucket - Chain Pulley Arrangement and disposed off manually to Wheel Barrow at Ground Level.

RAW SEWAGE TRANSFER PUMPS

Coarse screened raw sewage will be collected by gravity in a Raw Sewage Sump Wet Well. The Raw Sewage Sump Wet Well will be designed for Hydraulic Retention Time 7.5 Minutes at Year 2041 Design Peak Flow. The Raw Sewage Sump Wet Well will be at present provided with 5 Nos. Submersible Pumps catering to 49.5 MLD i.e. Year 2026 Design Peak Flow (22.0 MLD Year 2026 Design Average Flow). Space will be left for installation of additional 3 Nos. Submersible Pumps in future for catering to Balance Year 2041 Design Peak Flow. The 5 Nos. Submersible Pumps will each have ¼ Peak Flow Capacity such that 4 Nos. Pumps are in operation during Peak Flow, 2 Nos. Pumps are in operation during Average Flow and 1 No. Pump is in operation during Lean Flow. An Ultrasonic Level Sensor (linked to PLC/ SCADA) will be installed in the Raw Sewage Collection Sump and pump selection and operation will be regulated through PLC/ SCADA based on the sump sewage level and its variation. The Raw Sewage Transfer Pumps will be provided with individual PLC/ SCADA Controlled Electrically Actuated Delivery Butterfly Valves. A 600 NB DI K7 Common Delivery Header will transfer pumped raw sewage to the Stilling Chamber.


STILLING CHAMBER/ PLANT BYPASS

The Stilling Inlet Chamber will collect pumped raw sewage and distribute the same to 2 Nos. Mechanical Fine Screen Channels in parallel. Raw sewage can also be bypassed to Outfall Manhole from the Stilling Chamber. The bypass arrangement consists of Bypass Sluice Gate, Bypass Chamber 800 NB RCC Bypass Pipeline/ Bypass Manholes up to the Outfall Manhole.

FINE SCREENING

2 Nos. Mechanical Fine Mat/ Step Screens (1 Working + 1 Stand-By) each designed for Peak Flow will be provided. Mechanical fine screening will be carried out intermittently controlled through Ultrasonic Differential Level Sensor (linked to PLC/SCADA) installed upstream/ downstream of the screen. The Ultrasonic Level Sensor will activate the Mechanical Fine Mat/ Step Screen when the head loss across the screen touches 300 MM and will stop screen operation when the head loss across the screen reduces to 50 MM. The screenings will be collected mechanically in a Conveyor Belt and discharged on to a Wheel Barrow at ground level. The Mechanical Fine Screen Channels will be provided with Manual Inlet / Outlet Isolation Sluice Gates.

GRIT CHAMBERS

2 Nos. Mechanical Detritus Type Grit Chambers each designed for Half Peak Flow will be provided. 1 No. Grit Chamber will be operational during Average Flow/ Lean Flow and 2 Nos. Grit Chambers will be operational during Peak Flow. The Grit Chambers will be designed hydraulically to allow the entire Peak Flow to be passed through 1 No. Grit Chamber as and when the other is shut down for maintenance. The Grit Chambers will be provided with Manual Inlet Isolation Sluice Gates. Each Grit Chamber will be provided with Central Drive Head / Scraper Arrangement, Rake Classifier and Organic Return Pump (all controlled through PLC/ SCADA). The settled grit will be collected from the Rake Classifier discharge on to Wheel Barrow positioned at ground level. De-gritted sewage will overflow over Grit Chamber Outlet Weir and flow through Grit Chamber Outlet Channel to the Parshall Flume Channel.

PARSHALL FLUME CHANNEL

A Parshall Flume Channel equipped with Ultrasonic Flow Sensor will be provided for the purpose of flow measurement. The Ultrasonic Flow Sensor will have local as well as panel indication linked to PLC/ SCADA and will be provided with remote Totalizer and Recorder. The raw sewage will flow through RCC Channel to the Aeration Tank Inlet Annular Channel.

AERATION TANK

1 No. Aeration Tank will be provided to carry out aerobic biological treatment of raw sewage using activated sludge extended aeration process. It will be operated at a Food to Micro-Organism Ratio of 0.15 Kg BOD/ Kg MLSS – Day and Hydraulic Residence Time 9.6 Hours. The Aeration Tank will be circular in shape with radial central annular channel inlet having distribution orifices and a peripheral weir launder outlet. Oxygenation will be carried out through fine air bubble diffusion using retrievable type Fine Air Bubble Diffusers. 3 Nos. Twin Lobe Rotary Air Blowers operating on 2 Working, 1 Stand-By Basis each equipped with Variable Frequency Drive will be provided to supply air in to the Aeration Tank. The Aeration Tank will have a dissolved Oxygen Sensor linked to PLC SCADA. The Air Blower Speed will be regulated through PLC SCADA depending on the Dissolved Oxygen Level prevailing in the Aeration Tank. Aerated sewage from the Aeration Tank Outlet Chamber to Secondary Clarifier through 1000 NB DI K7 Pipeline provided with flushing connection.

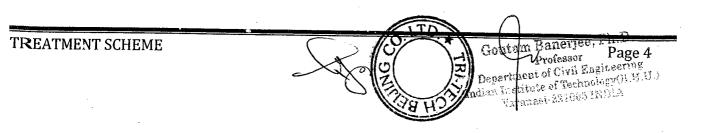
SECONDARY CLARIFER

The Secondary Clarifier will be designed for a Surface Loading Rate of 14.0 M^3/M^2 -day at average flow. Settled sludge from the Secondary Clarifier will be collected in a Return Sludge Sump and recycled back to the Aeration Tank on a continuous basis using 3 Nos. Submersible Pumps operating on 2 Working, 1 Stand-By Basis. A tapping from the Pump Delivery Header will be provided to waste excess activated sludge to the Gravity Sludge Thickener. Electrically Actuated Knife Edge Gate Valves will be provided in the Return Sludge Line to Aeration

TREATMENT SCHEME

Tank and in the Sludge Wasting Line to Gravity Sludge Thickener to regulate the respective flow rates as per requirement. The settled supernatant from the Secondary Clarifier will be discharged through RCC Channel to the Chlorine Contact Tank.

CHLORINATION/ TREATED SEWAGE DISPOSAL


The Chlorine Contact Tank will be of RCC baffled construction having Hydraulic Residence Time 30 minutes at Average Flow. Chlorination will be carried out at the inlet of the Chlorine Contact Tank at a Chlorine Dose 5.0 PPM (max).

Chlorinated sewage will overflow over weir to a Chlorine Tank Outlet Chamber and then through RCC Channel to the Outfall Manhole. The Chlorine Tank Outlet Chamber will be provided with 2 Nos. Submersible Flushing Pumps intermittently operating on 1 Working, 1 Stand-By Basis so as to provide treated sewage for poly-electrolyte solution preparation and for flushing purposes. The Client will arrange to discharge treated sewage from the Outfall Manhole to disposal.

2 Nos. Vacuum Chlorinators (Capacity 5.0 Kg/Hour) operating on 1Working, 1 Stand-By Basis will be provided for chlorination. 3 Nos. Chlorine Tonners will be provided operating on 1 Working, 2 Stand-By Basis. The Vacuum Chlorinator in operation will draw chlorine gas from 1 No. Chlorine Tonner while a second Chlorine Tonner will be kept connected to the Chlorine Gas Manifold ready for change over when the Chlorine Tonner in operation gets exhausted. 2 Nos. Chlorine Dosing Booster Pumps (1Working, 1 Stand-By) will be provided such that chlorine solution is dosed to the Chlorine Contact Tank Inlet Chamber. The Chlorine Dosing Booster Pumps will be PLC/ SCADA controlled and will draw treated sewage from the Chlorine Contact Tank for preparing chlorine solution.

SLUDGE HANDLING

The Gravity Sludge Thickener will be operated at a Design Sludge Loading Rate of 40.0 Kg TSS/M²-day. It is designed to thicken the excess waste activated sludge to 3.0% TSS concentration (Dry Solids Basis). Thickened sludge from the Gravity Sludge Thickener will be pumped using 2 Nos. Centrifuge Feed Pumps operating on 1 Working, 1 Stand-By Basis to 2 Nos. Solid Bowl Centrifuges operating on 1 Working, 1 Stand-By Basis. The Solid Bowl Centrifuges will be housed in the first floor of the Centrifuge Shed. On-line poly-electrolyte dosing will be carried out to aid sludge dewatering. 2 Nos. Poly Tanks (1Working, 1 Stand-by) and 2 Nos. Poly Dosing Pumps (1 Working, 1 Stand-By) will be provided for the purpose of poly-electrolyte solution preparation and dosing. Dewatered sludge cake from the Solid Bowl Centrifuges will be collected in Tractor Trolleys and disposed off suitably. The supernatant from the Gravity Sludge Thickener and the Centrifuge will be recycled back to the Raw Sewage Sump Wet Well by gravity.

0				
Owner	: Bihar Urban Infrastructure	Development (orporation Ltd. Patna	
Project	: Sewerage Network and 22 MLD STP Plant For Hajipur Town			
Contractor	: Tri-Tech (Beijing) Company Ltd. Beijing (New Delhi)			
Doc. Name	: Process Design Calculations for STP Plant			
Doc. No.	: TT/BEI/HJ/1051/STP/A02	REV. 02	DT. 13.05 2013	

1.0 SEWAGE GENERATION AND CHARACTERISTICS

The 22 MLD Sewage Treatment Plant is designed using the Activated Sludge Extended Aeration Process for the following sewage flow rate and characteristics:

Design Year 2026

Average Flow Rate

Peaking Factor Peak Flow Rate : 22.0 MLD i.e. 22000.0 M^3 /Day = 916.67 M^3 /Hour = 0.255 M^3/s : 2.25 : 22000.0 x 2.25 i.e. 49500.0 M^3 /day = 2062.5 M^3 /Hour = 0.573 M^3/s

Design Year 2041

Average Flow Rate

Peaking Factor Peak Flow Rate : 33.0 MLD i.e. 33000.0 M^3 /Day = 1375.0 M^3 /Hour = 0.382 M^3 /s : 2.25 : 33000.0 x 2.25 i.e. 74250.0 M^3 /day = 0.859 M^3 /Hour = 0.859 M^3 /s

Page 1

TD

Note: The Raw Sewage Pumping Station is designed for raw sewage flow rate corresponding to Design Year 2041 whereas the balance STP is designed for raw sewage flow rate corresponding to Design Year 2026. Raw Sewage Pumps will be designed and supplied to cater to raw sewage flow rate corresponding to Design Year 2026 and sufficient vacant space will be provided for installation of additional pumps in future.

Suspended Solids SS Bio-Degradable VSS	300.0 mg/l 700.0 mg/l 600.0 mg/l 330.0 mg/l (Considered) 270.0 mg/l (Considered)	Goutam Banerjee, Ph.D. Professor Department of Civil Engineering Indian Institute of Technology(B.H.U.) Varanani-221005 INDIA
---	--	---

2.0 TREATED SEWAGE QUALITY

The Treated Sewage Quality shall conform to NRCD Guidelines, as follows:

BOD	<	20.0 mg/L
SS	<	30.0 mg/L

3.0 RECEIVING CHAMBER

•	1
:	RCC
:	0.859 M ³ /s
:	3.0 M x 3.0 M
•	1.15 M
:	$3.0 \times 3.0 \times 1.15$ i.e. 10.4 M ³
:	10.4 / 0.859 i.e. 12.0 s
	•

4.0 MECHANICAL COARSE BAR SCREEN CHANNEL

No.	:	1 (Working)
Material of Construction	:	RCC, with SS 304 Coarse Bar Screen
Design Basis	•	Year 2041 Peak Flow i.e. 0. 859 M^3/s
Angle of Inclination	:	80 ⁰
Length	•	5.0 M
Side Water Depth	9 0	1.1 M
Inclined Submerged Screen	•	$(1.1 / Sin 80^{\circ})$ i.e. 1.12 M
Length		
Velocity (through Screen	•	1.2 M/s
at Peak Flow, NIL Clogging)		· .
Clear Width	6 0	0. 859 M ³ /s / (1.12 M x 1.2 M/s)
	i.e.	0.639 M
Clear Spacing	•	20 MM
No. of Openings	:	0.639 M/ 0.020 M
· · · · · · · · · · · · · · · · · · ·	i.e.	32.0
No. of Bars	:	32 + 1 i.e. 33
Bar Size	•	
Screen Channel Width (Minimum)	:	$(32 \times 0.020) + (33 \times 0.008)$ Goutan Rate Jev, 1 -
	i.e.	0.904, say 0.95 M Department of Civil Engineering Department of Civil Engineering
Side Margin for Operating	•	0.904, say 0.95 MDepartment of Civil Englished (0.14.U.)0.3 MIndian Institute of Technology (0.14.U.)
Mechanism	•	0.3 M Indian Icstrute of Technologia Verasasi-221005 INDIA
Screen Channel Width (Overall)	e 0	0.95 + 0.3 i.e. 1.25 M
Approach Velocity (Average Flow)	•	$0.382/(1.25 \times 1.1)$ i.e. $0.28 = 0.3$ M/s
- · · · · · · · · · · · · · · · · · · ·		

Page 2

Screen Height

Head Loss (Design) Operation Service Accessory Equipment (approx.), i.e. OK
SWD (U/s) + FB (U/s) + Conveyor Height +
0.5 + 0.3 (Safety Factor) i.e. 1.1 + 7.45 +
0.6 + 0.5 + 0.3 = 9.95 M (Minimum)
0.15 M
Automatic (Timer Controlled)
Continuous/ Intermittent
Electric Motor/ Drive Mechanism w/
Mechanical Travelling Rakes/ Control
Panel/ Belt Conveyor (w/ Electric Motor and
Drive Arrangement)/ MSEP/ FRP Wheel
Barrow (2 Nos.)

Notes:

1. Due to difficulty associated with underground construction of deep Screen Channels of narrow width, the Screen Channel will be constructed at below Ground Level on a RCC Platform covering portion of the Raw Sewage Collection Sump (Wet Well). The Conveyor Belt will be installed at the Raw Sewage Collection Sump (Wet Well) Top of Structure Level i.e. 0.5 M above Ground Level.

:

•

:

:

۰

- 2. Screenings will be mechanically collected on to a Conveyor Belt and then disposed off mechanically by gravity to Wheel Barrow at Ground Level.
- 3. The Belt will start automatically when the Mechanical Screen starts and will stop automatically after a lag period of 60 seconds after the Mechanical Screen stops.
- 4. Height of Screen/ Conveyor Belt are subject to modification depending on Manufacturer Specifications.

Inlet Isolation Sluice Gate

No.	•	1
Туре	•	Flange Back Frame Thimble Mounted,
Design Standard	0 -	Rising Spindle, Flush Bottom Closure IS: 13349
Material of Construction	:	Cast Iron (as per NIT)
Peak Flow Rate	:	$0.859 \text{ M}^3/\text{s}$
Velocity (at Peak Flow)	:	900 MM x 900 MM
Operation	:	0.859 / (0.900 x 0.900) i.e. 1.06 M/s
operation		Manual

Note: Outlet Isolation Sluice Gates are not required as the screened sewage will directly free fall to Raw Sewage Collection Sump (Wet Well) below the Mechanical Coarse Screen Channel through bottom perforations at the outlet end of the channel.

Repression Phillipping Gouth Department of Civil Engineering Indian Inscitute of Technology(B.H.C.) Varanasi-221005 INDIA

Page 3

5.0 MANUAL COARSE BAR SCREEN CHANNEL

No.	:	1 (Stand-By)
Material of Construction	:	RCC, with SS 304 Coarse Bar Screen
Design Basis	:	Year 2041 Peak Flow i.e. 0.859 M ³ /s
Angle of Inclination	:	60 ⁰
Length	:	5.0 M
Side Water Depth	:	1.1 M
Inclined Submerged Screen	:	$(1.1 / \sin 60^{\circ})$ i.e. 1.27 M
Length	·	(1.17 SHI 00) 1.0. 1.27 W
Velocity (through Screen	:	1.2 M/s
at Peak Flow, NIL Clogging)		
Clear Width	:	0.859 M ³ /s / (1.27 M x 1.2 M/s)
	i.e.	0.564 M
Clear Spacing	•	20 MM
No. of Openings	:	0. 564 M/ 0.020 M
	i.e.	28.2, say 29
No. of Bars	:	29 + 1 i.e. 30
Bar Size	:	8 MM x 40 MM
Screen Channel Width	•	(29 x 0.020) + (30 x 0.008)
	i.e.	0.82, say 0.85 M
Approach Velocity (Average Flow)	:	0. 382/ (0.85 x 1.1) i.e. 0.41 M/s, i.e. OK
		Screen will take care the velocity at peak
		flow also
Screen Height	:	SWD (D/s) + FB (D/s) i.e. $1.1 + 0.5 = 1.6$ M
Head Loss (Design)	:	0.15 M
Operation	:	Manual
Service	•	Intermittent
Accessory Equipment	:	MSEP Rakes (2 Nos.)/ Bucket Chain Pulley Screenings Removal Arrangement

Notes:

- 1. Due to difficulty associated with underground construction of deep Screen Channels of narrow width, the Screen Channel will be constructed at below Ground Level on a RCC Platform covering portion of the Raw Sewage Collection Sump (Wet Well).
- 2. Screenings will be manually raked on to a RCC Perforated Platform and then transferred to Raw Sewage Collection Sump (Wet Well) Top of Structure Level through Bucket Chain Pulley Arrangement and disposed off manually to Wheel Barrow at Ground Level.

Inlet Isolation Sluice Gate

Goutam Bangrjee, Fh.D. ofessor vil Engineering Seconology(B.H.) Bepartment of (Manual freedom and an anna Vanadsi

Page 4

Mounted,
Closure
06 M/s

Note: Outlet Isolation Sluice Gate is not required as the screened sewage will directly free fall to Raw Sewage Collection Sump (Wet Well) below the Mechanical Coarse Screen Channel through bottom perforations at the outlet end of the channel.

6.0 RAW SEWAGE PUMPING STATION

Raw Sewage Collection Sump (Wet Well)

No.	:	1
Material of Construction	:	RCC
Peak Flow Rate	:	0. 859 M^3/s
Hydraulic Retention Time	:	7.5 Minutes
(at Peak Flow)		
Volume (Required)	:	$0.859 \ge 60 \ge 7.5$ i.e. 386.6 M ³
Diameter	:	18.5 M
Side Water Depth	:	1.45 M
Volume (Provided)	:	$(\Pi/4 \text{ x } 18.5 \text{ x } 18.5 \text{ x } 1.45)$ i.e. 389.8 M ³
Hydraulic Retention Time	•	389.8/ (0.382 x 60) i.e. 17.0 Min, i.e. OK
(at Average Flow)		
Accessory	:	Ultrasonic Level Sensor (Linked to PLC/
,		SCADA)

Raw Sewage Transfer Pumps

Nos.	: 5 (4 Working + 1 Stand-By – Peak Flow)
	: 5 (2 Working + 3 Stand-By – Average Flow)
Design Basis	: Year 2026 Peak Flow i.e. 2062.5 M ³ /Hour
Capacity	: 2062.5/ 4 i.e. 515.6 say 520.0 M ³ /Hoursteen/Paperice, Ph.D
Discharge Head	: 2062.5/4 i.e. 515.6 say 520.0 M ³ /Hourouten/Hanerjee, Ph.D : 17.0 MWC
Туре	 Submersible Non Clog, Wet Well Department of Givil Engineeri diau Luaritus of Rechanology(B. Installation
	Installation
Operation	: Automatic (Controlled by Ultrasonic Level

PROCESS DESIGN CALCULATION FOR STP PLANT

Material of Construction		Sensor, linked to PLC/ SCADA)
Casing Impeller Shaft/ Fasteners/ Foundation Bolts Guide Rail Accessory Equipment	: : : :	Cast Iron Stainless Steel ASTM A 743 CF8M Stainless Steel 316 Stainless Steel SS 304 Submersible Electric Motors/ Lifting
		Chains/ Guide Rails

Note: It shall be ensured that any pump shall be in operation for minimum 5 minutes

Individual Pump Delivery Lines

Size	:	300 NB
Design Velocity	:	520.0/ 3600/ (П4 x 0.3 x 0.3) i.e. 2.04 M/s
Material of Construction	:	DI K7
Accessory Equipment		Non Return Valve/ Butterfly Valve
		(Electrically Actuated)/ Pressure Gauge

Combined Pump Delivery Header

Design Flow	:	520.0 x 4 i.e. 2080.0 M ³ /Hour
Size	:	600 NB
Design Velocity	:	2080.0/ 3600/ (П/4 x 0.6 x 0.6)
	i.e.	2.04 M/s
Material of Construction	:	DI K7

:

:

: :

:

Dry Well

Note: The Dry Well be constructed above the Raw Sewage Collection Sump (Wet Well) and will be used for access to the Submersible Pumps for operation and maintenance as required.

No.	
Material of Construction	
Length	
Width	
Accessory	

1 RCC Slabs/ Walkways w/ Hand Railing 18.5 M 6.0 M 3.0/ 5.0 Ton Capacity Manual Chain Pulley Hoist with ISMB 300/ 350 Monorail Goutam Banerjee, Ph.D.

7.0 STILLING CHAMBER

Department of Civil Engineering Indian Institute of 'Jechnology(B.H.U.) LONG LOUINS Varanasi ΓD Page 6

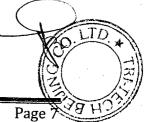
Professor

No.	:	1
Material of Construction	:	RCC
Plan Dimensions	:	2.1 x 2.1 M
Straight Water Depth	:	3.95 M
Volume	:	2.1 x 2.1 x 3.95 i.e. 17.4 M ³
Hydraulic Retention Time	:	17.4/ 0.573 i.e. 30.4 s
(at Peak Flow)		

Bypass Sluice Gate

:	1
:	Flange Back Frame Thimble Mounted,
	Rising Spindle, Flush Bottom Closure
:	IS: 13349
:	Cast Iron (as per NIT)
:	$0.573 \text{ M}^3/\text{s}$
:	550 MM x 550 MM
:	0.573 / (0.550 x 0.550) i.e. 1.89 M/s
:	Manual
	• • •

Bypass Chamber


No.	:	1
Material of Construction	•	RCC
Peak Sewage Flow Rate	:	0.573 M ³ /s
Plan Dimensions	•	2.1 M x 1.2 M
Side Water Depth	:	2.5 M

Bypass Sewage Pipeline, Bypass Chamber to Treated Sewage Sump Wet Well

No.	:	1
Material of Construction	:	RCC
Peak Flow Rate	:	$0.573 \text{ M}^3/\text{s}$
Size		800 NB
Velocity (at Peak Flow)		$0.573/(\Pi/4 \ge 0.8 \ge 0.8)$ i.e. 1.14 M/s
	•	0.5757 (114 x 0.6 x 0.6) 1.c. 1.14 W/S

Bypass Man Holes

Nos.	0 *	3	
Material of Construction Diameter	:	RCC (w/ RCC Top Cover Slab)	C
Side Water Depth	•	1.3 M 2.5 M (Max)	-1

PROCESS DESIGN CALCULATION FOR STP PLANT (routam Hanerjee, Ph.D.

Professor Department of Givil Engineering Indian institute of Technology (S.H.U.) Varanasi-221005 (NOTA

8.0 MECHANICAL FINE SCREEN CHANNELS

Nos. 2 (1 Working + 1 Stand-By) : Type : Mat/ Step Fine Screen Material of Construction RCC, with SS 304 Fine Screen • **Design Basis** : Peak Flow i.e. 0.573 M³/s Angle of Inclination 40^{0} Length 6.0 M Side Water Depth 1.0 M Height of Screen Protection 0.225 M : Plate (Blind Step) Inclined Submerged Screen $(1.0 / Sin 40^{0} - 0.225)$ i.e. 1.331 M : Length Velocity (through Screen, at 1.0 M/sPeak Flow) Clear Width ٠ $0.573 / (1.331 \times 1.0)$ i.e. 0.431 M **Clear Spacing** ٠ 6 MM No. of Openings 0.431 / 0.006 71.8, say 72 i.e. No. of Bars 72 - 1 i.e. 71 : **Bar** Thickness 2 MM : Screen Width $(72 \times 0.006) + (71 \times 0.002)$: 0.574 M, say 0.6 M i.e. Side Margin for Operating : 0.3 M Mechanism Screen Channel Width 0.6 + 0.3 i.e. 0.9 M Approach Velocity (Average Flow) $0.255/(0.9 \times 1.0)$ i.e. 0.28 = 0.3: M/s (app.) Screen shall take care peak flow Height of Screen SWD + Free Board (d/s) + Height ٠ (Conveyor) + Free Fall i.e. 1.0 + 0.5 + 0.6 + 0.60.5 = 2.6 M (Minimum) Head Loss through Screen : 300 MM (Maximum) **Design Clogging** 49% (Maximum) : Operation Automatic (Controlled through Ultrasonic : Differential Level Sensor linked to PLC/ SCADA) Service Intermittent • Hydraulic Check Approach Velocity 0. 0.573/ (0.9 x 1.0) i.e. 0.64 M/s (at Peak Flow)

PROCESS DESIGN CALCULATION FOR STP PLANT

Goutam Banerjee, Ph.D. Professor Reportment of Givil Engineering Indian Lastinge of Technology(E.R.U.) Varantsl-991005 (MDLA

Page 8

Velocity through Screen (at NIL Clogging) Head Loss (at NIL Clogging) Velocity through Screen (at 49% Clogging) Head Loss (at 50% Clogging)

Accessory Equipment

0.573/ ((1.331) x (72 x 0.006) x (1.0 - 0.0))

1.0 M/s

•

_

•

:

•

=

•

 $1/0.7 \text{ x} (1^2 - 0.64^2) / (2 \text{ x} 9.81)$

= 0.043 M

 $0.573/((1.331) \times (72 \times 0.006) \times (1.0 - 0.49))$

= 1.95 M/s

 $1/0.6 \ge (1.94^2 - 0.64^2) / (2 \ge 9.81)$

0.288 < 0.3 M i.e. OK

Drive Mechanism, Control Panel, Belt Conveyor (w/ Electric Motor and Drive Arrangement)/ MS Epoxy Painted/ FRP Chute/ Hand Cart (2 Nos.)

Notes:

- 1. Ultrasonic Differential Level Sensor will be provided so as to activate Mechanical Fine Screen Drive Mechanism when Upstream Level touches 300 MM above Downstream Level and shuts off Screen Drive Mechanism when Upstream Level reduces to 50 MM above Downstream Level.
- 2. Screenings will be mechanically collected on to a Conveyor Belt common to both Fine Screens and then disposed off via Chute to Wheel Barrow at Ground Level.
- 3. The Conveyor Belt will start automatically when the Mechanical Screen starts and will stop automatically after a lag period of 60 seconds after the Mechanical Screen stops.

Inlet Isolation Sluice Gates

Nos.	•	2
Туре	:	Open Channel, Rising Spindle, Flush
Material of Construction Peak Flow Rate Width Height Velocity (at Half Peak Flow) Operation	:	Bottom Closure Cast Iron (as per NIT) $0.573 \text{ M}^3/\text{s}$ 400 MM 1300 MM SWD + 300 MM FB $0.573 / (0.4 \times 1.3)$ i.e. 1.10 M/s Manual
Nos. Eype Material of Construction	:	2 Open Channel, Rising Spindle, Flushtam Banerjee, Ph.D. Bottom Closure Cast Iron (as per NIT) Undam Institute of Technology (S.I. Varianted States (States)

Half Peak Flow Rate $0.573 \text{ M}^3/\text{s}$ Width550 MMHeight1000 MM SWD + 300 MM FBVelocity (at Peak Flow)0.573 / (0.5 x 1.1) i.e. 1.04 M/sOperationManual

9.0 MECHANICAL GRIT CHAMBERS

ът

NO.	:	2 (Working)
Material of Construction	:	RCC, with MS Epoxy Painted Grit Scraper/
Design Basis		Rake Classifier/ CI Organic Return Pump
5	• .=	Half Peak Flow, i.e. 49500.0/ 2 24750.0 M ³ /day
	i.e.	$0.286 \text{ M}^3/\text{s}$
Design Surface Loading Rate	:	$720.0 \text{ M}^3/\text{M}^2$ -day
Plan Area (Required)	:	24750.0 M ³ /day / 720.0 M ³ /M ² -day
	i.e.	34.4 M^2
Plan Dimensions	:	5.9 M x 5.9 M
Hydraulic Retention Time	:	60s
Volume	•	$0.286 \ge 60$ i.e. 17.2 M ³
Side Water Depth	:	17.2 / (5.9 x 5.9) i.e. 0.49 M
Grit Storage Depth	:	0.41 M
Overall Depth	:	0.49 + 0.41 i.e. 0.9 M

Note: Settled grit in Grit Chamber will be mechanically scraped to Rake Classifier Channel, lifted through Rake Classifier and dropped in to Wheel Barrow positioned at Ground Level.

:

:

:

•

:

:

Inlet Isolation Sluice Gates

Nos.

Туре

Material of Construction Design Basis Peak Flow Rate Vidth Height Jocity (at Peak Flow) Deration 2 Open Channel, Rising Spindle, Flush Bottom Closure Cast Iron (as per NIT) Peak Flow 0.573 M³/s 550 MM 950 MM SWD + 300 MM FB 0.573 / (0.55 x 0.95) i.e. 1.10 M/s Manual

DESIGN CALCULATION FOR STP PLANT

Goutam Benerjee, Ph.D. Projector Department of Civil Engineering Indian Institute of Technology (B.H.H.) Cameri-J21905 (NDIA

10.0 PARSHALL FLUME CHANNEL

No. 1	
Material of Construction RCC	
Peak Flow Rate $0.573 \text{ M}^3/\text{s}$	
Throat Width : 1.5 Feet (0.457 M)	
Length : 9.8 M	
Upstream Head : 0.672 M	
Downstream Head : 0.421 M (Considered)	
Head Loss $0.672 - 0.421 = 0.251$, say 0.3 M	
Side Water Depth (d/s) 0.65 M	
Width : 0.8 M	
Description X7.1	
Side Weter D 41 (1)	
Flow Measurement : Ultrasonic Sensor (Linked to PLC SC	'ADA)

11.0 AERATION TANK

The design sewage characteristics entering the Aeration Tank will be as given in Clause 1.0 above.

No.	:	1
Material of Construction		RCC
Type of Aeration	•	Fine Bubble Diffused Aeration
Design Basis	•	Average Flow is 22000 0 kd/p
-	i.e.	Average Flow, i.e. 22000.0 M ³ /Day 916.7 M ³ /Hour
Inlet BOD to Aeration Tank		
Inlet BOD Load	•	300.0 mg/l
		$0.300 \text{ Kg/M}^3 \text{ x } 22000.0 \text{ M}^3/\text{Day}$
MLSS Concentration, X	i.e.	6600.0 Kg BOD/ Day
Food to Micro-Organism	:	5000.0 mg/l
Ratio	:	0.15 Kg BOD/ Kg MLSS - Day
Hydraulic Retention Time		
Hydraune Retention Time	•	300.0 mg/l / (5000 mg/l x 0.15)
Volume (Decretion 1)	i.e.	0.4 days (9.6 Hours)
Volume (Required)	:	22000.0 M ³ /Day x 0.4 Days
Side West D	i.e.	8800.0 M ³
Side Water Depth	:	5.0 M
Plan Area	:	$8800.0 \text{ M}^3 / 5.0 \text{ M}$
D	i.e.	1760.0 M^2
Diameter	•	47.4 M
Plan Area Provided	:	$\prod/4 \ge 47.4 \ge 47.4$ i.e. 1764.6 M ² , i.e. OK
Accessory	•	On-Line DO Meter (Linked to PLC/
	-	
		(AULICIUS SIGNAL)
		Penagtoresi of Civil Engineering
		Indian Institute of Technolog //B.H.U.
PROCESS		ITD
PROCESS DESIGN CALCULA	FION FOI	R STP PLANT
		Settlet Coll
		HO HO

Aeration Tank Inlet Channel

No.	:	1
Material of Construction	:	RCC
Peak Sewage Flow Rate	:	$0.573 \text{ M}^3/\text{s}$
Return Sludge Flow Rate	•	$0.255 \text{ M}^3/\text{s}$
Total Sewage Flow Rate	:	(0.573 + 0.255) i.e. 0.828 M ³ /s
Width	:	1.1 M
Side Water Depth	:	0.9 M
Channel Velocity	:	$0.828/(20 \text{ x} \prod/4 \text{ x} 0.25 \text{ x} 0.25)$
	i.e.	0.84 M/s

Aeration Tank Inlet Annular Channel

No.	:	1
Material of Construction		RCC
Peak Sewage Flow Rate	:	$0.573 \text{ M}^3/\text{s}$
Return Sludge Flow Rate	:	$0.255 \text{ M}^3/\text{s}$
Total Sewage Flow Rate	:	(0.573 + 0.255) i.e. 0.828 M ³ /s
Width	:	0.9 M
Side Water Depth	:	0.8 M
Nos. Orifices	:	20
Orifice Size	:	250 NB
Orifice Spacing	:	1.26 M c/c
Orifice Velocity		$0.828/(20 \text{ x} \prod/4 \text{ x} 0.25 \text{ x} 0.25)$
-	i.e.	0.84 M/s

Aeration Tank Outlet Weir Launder

No. Material of Construction Peak Sewage Flow Rate Return Sludge Flow Rate Total Sewage Flow Rate Peripheral Length Width Side Water Depth (U/s) Side Water Depth (D/s)	::	1 RCC 0.573 M³/s 0.255 M³/s (0.573 + 0.255) i.e. 0.828 M³/s 148.9 M Goutam Banariee, Ph.D. 0.8 M 0.8 M 0.8 M 0.8 M Department of Grif Appingering 0.8 M 0.7 M
Aeration Tank Outlet Chamber No.	:	

PROCESS DESIGN CALCULATION FOR STP PLANT

Material of Construction	:	RCC
Peak Sewage Flow Rate	:	$0.573 \text{ M}^{3}/\text{s}$
Return Sludge Flow Rate	:	$0.255 \text{ M}^3/\text{s}$
Total Sewage Flow Rate	:	(0.573 + 0.255) i.e. 0.828 M ³ /s
Plan Dimensions	:	2.0 M x 2.0 M
Side Water Depth	:	7.45 M
Volume	:	2.0 x 2.0 x 7.45 i.e. 29.8 M ³
Hydraulic Retention Time	:	29.8/ 0.828 i.e. 36 s

Pipeline, Aeration Tank to Secondary Clarifier

i.e. $3.25 \ge 0.828 \text{ M}^3/\text{s}$ Pipeline Diameter:Pipeline Velocity: $0.828/(\Pi/4 \ge 1.0 \ge 1.05 \text{ M/s})$	Design Flow Rate	: =	Peak Flow + Return Sludge Flow (2.25 + 1.0) x Average Flow
· DIR/	Pipeline Velocity Pipeline MOC	i.e. : :	$3.25 \ge 0.255 = 0.828 \text{ M}^3/\text{s}$ 1000 NB $0.828/(\Pi/4 \ge 1.0 \ge 1.05 \text{ M/s})$

Sludge Generation

Non Bio-Degradable VSS/ FSS	:	0.27 x 22000.0 i.e. 5940.0 Kg/d
Biological Sludge Generation	:	30% of Inlet BOD Load
	:	0.3 x 6600.0 i.e. 1980.0 Kg/day
Total Sludge Generation	:	5940.0 + 1980.0 i.e. 7920.0 Kg/day
Clarifier Underflow TSS, X _R	:	10000 mg/l
Sludge Recirculation Ratio	:	$X/(X_{R} - X) = 5000 / (10000 - 5000)$
	i.e.	1.0

12.0 AERATION TANK POWER CALCULATIONS

Oxygen Requirement 1.2 x Inlet BOD Load : 1.2 x 6600.0 i.e. 7920.0 Kg O₂/d = 330.0 Kg O₂/ Hour i.e. Type of Aeration Fine Bubble Diffused Aeration : Field Oxygen Transfer Efficiency 15% : (at 5.0 M SWD) Air Density 1.2 Kg/M^3 : Oxygen Content in Air 23% : Air Flow Rate 330.0 / (0.23 x 1.2 x 0.15) : i.e. 7971.0 M³/ Hour PROCESS DESIGN CALCULATION FOR STP PLANT Canerjee, Ph.D. Page 13 Professor Department of Civil Engineering Separation I Standard Consumering Indian Inclinics of Techaology (B.H.U.) Wareneel-201005 121DCA

Nos. Air Blowers	•	3 (2 Working, 1 Stand-By)
Air Blower Capacity	:	7971.0/2 i.e. 3985.5 say 4000.0 M ³ /Hour
Discharge Pressure		0.6 Kg/cm^2
Accessories	:	VFD Drives (Linked to PLC/SCADA)

13.0 SECONDARY CLARIFIER

No.	:	1
Material of Construction	•	RCC, with MS Epoxy Coated Peripheral
		Drive/ FRP V Notch Weir
Design Flow	:	Average Flow 22000.0 M ³ /d
Design Surface Loading Rate		$14.0 \text{ M}^3/\text{M}^2$ - Day
Diameter	:	$(22000.0 \text{ M}^3/\text{Day} / 14 \text{ M}^3/\text{M}^2 \text{-d x } 4/\Pi)^{1/2}$
	i.e.	44.7 M
Side Water Depth	:	3.0 M
Volume	:	П/4 x 44.7 M x 44.7 M x 3.0 M
	i.e.	4707.9 M^3
Hydraulic Retention Time	:	4707.9/ 22000.0 x 24 i.e. 5.1 Hours
Peak Flow Loading Rate	:	$(22000.0 \text{ x} 2.25) / (\Pi/4 \text{ x} 44.7 \text{ x} 44.7)$
		$31.5 \text{ M}^3/\text{M}^2$ - Day, i.e. OK
Solids Loading Rate	:	$22000.0 \text{ x}(1.0 + 1.0) \text{ x } 5/(\Pi/4 \text{ x } 44.7 \text{ x } 44.7)$
(at Average Flow)	=	140.2 Kg/ M^2 - Day, i.e. OK

Secondary Clarifier Weir Launder

Design Flow Rate	:	Peak Flow i.e. 0.417 M ³ /s
Launder Width	:	0.8 M
Launder MOC		RCC
Side Water Depth (U/s)	•	0.6 M
Side Water Depth (D/s)	•	0.55 M
	•	0.00 11

:

:

:

:

:

Channel, Secondary Clarifier to Chlorine Contact Tank

Design Flow Rate Channel Width Channel Side Water Depth Channel Velocity Channel MOC

Peak Flow i.e. $0.573 \text{ M}^3/\text{s}$ 0.9 M 0.6 M $0.573/(0.9 \times 0.6) = 1.06 \text{ M/s}$ RCC

CHLORINE CONTACT TANK

iee, Ph.D. Goutara B ut Engineering 6.0 radian kasilinis of Technology(R.H.U.) Vanadahiri 22,005 MIMA

Page 14

No.	:	1
Material of Construction	:	RCC (w/ Brick Masonry Baffles)
Hydraulic Retention Time	•	30 Minutes
(at Average Flow)		
Volume (Required)	•	22000.0/ 24/ 60 x 30 i.e. 458.3 M ³
Diameter	:	14.0 M
Straight Water Depth	:	3.0 M
Volume	:	$\prod/4 \ge 14.0 \ge 14.0 \ge 3.0$ i.e. 461.8 M ³ , OK
Chlorine Dose	:	5 PPM (Max)
Chlorine Requirement	:	$22000.0 M^{3}/d \ge 0.005 Kg/M^{3}$
	=	110.0 Kg /Day i.e. 4.6 Kg/Hour (Max)

Chlorine Contact Tank Outlet Chamber

No.	:	1
Material of Construction	:	RCC
Plan Dimensions	:	4.0 M x 2.5 M
Straight Water Depth	:	2.8 M
Volume	:	$4.0 \ge 2.5 \ge 2.8$ i.e. 28.0 M ³
Hydraulic Retention Time	:	28.0/ 0.573 i.e. 48.9 s
(at Peak Flow)		

Flushing Pumps

Nos. Type	:	2 (1 Working, 1 Stand By) Submersible Non Clog, Wet Well
Capacity	•	Installation 15.0 M ³ /Hour
Discharge Head	:	25.0 MWC
Operation	:	Manual
Material of Construction		
Casing	:	Cast Iron
Impeller	:	Stainless Steel ASTM A 743 CF8M
Shaft/ Fasteners/ Foundation Bolts	:	Stainless Steel 316 Goutarf Banerjee, Ph.
Guide Rail	:	Stainless Steel SS 304 Professor Department of Civil Enginee
Accessory Equipment	:	Submersible Electric Motors/ Lifting
		Chains/ Guide Rails

l

TTR

re 15

Note: The Flushing Pumps will pump treated sewage as required to the Centrifuges for flushing purpose and to Polyelectrolyte Tanks for preparing polyelectrolyte solution. Flushing Connection (with Valve) will also be provided from the Pump combined

Delivery Header to the Aeration Tank – Secondary Clarifier Pipeline, Secondary Clarifier Outlet Sludge Pipeline and to the Gravity Sludge Thickener Sludge Outlet Pipeline.

Individual Pump Delivery Lines/ Combined Delivery Header

Size Design Velocity Material of Construction Accessory Equipment	: : i.e. :	65 NB 15.0/ 3600/ (Π/4 x 0.065 x 0.065) 1.26 M/s GI Class C Non Return Valve/ Isolation Gate Valves/ Pressure Gauge
--	---------------------	--

Channel, Chlorine Contact Tank Outlet Chamber to Outlet Manhole

Design Flow Rate	:	Peak Flow i.e. 0.573 M ³ /s
Channel Width	:	0.9 M
Channel Side Water Depth	:	0.6 M
Channel Velocity	:	$0.573/(0.9 \ge 0.6) = 1.06 \text{ M/s}$
Channel MOC	:	RCC

15.0 CHLORINATION BUILDING

No. Material of Construction	•	1 RCC Roof/ Columns, PCC Floor, Brick
Chlorinator Room Height Chlorine Tonner Shed Height	: : :	Masonry Side Walls for Chlorinator Room, Side Open for Tonner Shed 5.0 M x 4.0 M 4.5 M 5.0 M x 8.0 M 5.0 M 5.0 M Coutant Benerjee, Ph.D. Professor Department of Chill Engineering Department of Chill Engineering
Vacuum Chlorinators		Indian Insertion Argon India
Nos. Capacity	:	2 (1 Working, 1 Stand-By) 5.0 Kg/ Hour
Chlorine Tonners		
Nos. Chlorine Tonner Capacity	:	4 (1 Working, 3 Stand-By) 950.0 Kg
PROCESS DESIGN CALCUL		1-13

CESS DESIGN CALCULATION FOR STP PLANT

Total Chlorine Storage

950.0 x 4 / 110.0 i.e. 34.5 Days

Chlorine Dosing Booster Pumps

Nos. Capacity Discharge Head MOC	 2 (1 Working, 1 Stand-By) 4.0 M³/ Hour 40.0 MWC Cast Iron 	
Accessories	Control Panel 20 Ten Control	

:

Control Panel, 3.0 Ton Capacity Manual Hoist complete w/ Manual Geared Traveling Trolley and Monorail, Tonner Lifting Beam, 3.0 Ton Capacity Dial Type Load Indicator, Auto Switchover Facility, Leak Detection/ Absorption Equipment, Safety Equipment

16.0 RETURN SLUDGE SUMP

No.		
	:	1
Material of Construction	:	RCC
Return Sludge Flow Rate	:	Average Flow x 1.0 i.e. 916.7 M ³ /Hour
Hydraulic Retention Time	:	10.0 Minutes
Volume (Required)	:	916.7/ 60 x 10 i.e. 152.8 M^3
Length	:	7.0 M
Width	:	4.0 M
Side Water Depth	:	5.55 M
Volume (Provided)	:	(7.0 x 4.0 x 5.55) i.e. 155.4 M ³ , i.e. OK
Accessory	:	Ultrasonic Level Sensor (Linked to PLC/
· · ·		SCADA)

Return Sludge Pumps	Goutan Banerjee, Ph.D.
Nos. Type	 3 (2 Working, 1 Stand By) Submersible Non Clog, Wet Weldian Institute ar Technology(B.H Installation 916 7 M³/Hour
Return Sludge Flow Rate Sludge Generation Sludge Concentration Sludge Flow Rate	Installation 916.7 M ³ /Hour 7920.0 Kg/ Day 1% 7920.0 Kg/Day / (1000 Kg/M ³ x 0.01)
Pump Capacity (Required) Pump Capacity (Provided) Discharge Head	$= 792.0 \text{ M}^{3}/\text{Day i.e. } 33.0 \text{ M}^{3}/\text{Hour}$: (916.7 + 33.0) / 2 i.e. 474.9 M ³ /Hour : 475.0 M ³ /Hour : 7.5 MWC

PROCESS DESIGN CALCULATION FOR STP PLANT

Operation Material of Construction	:	Automatic (Controlled by Ultrasonic Level Sensor, linked to PLC/ SCADA)
Casing Impeller Shaft/ Fasteners/ Foundation Bolts Guide Rail	: : :	Cast Iron Stainless Steel ASTM A 743 CF8M Stainless Steel 316 Stainless Steel SS 304
Accessory Equipment	:	Submersible Electric Motors/ Lifting Chains/ Guide Rails/ 2.0 Ton Capacity Manual Chain Pulley Hoist/ ISMB 200 Monorail

Note: The Return Sludge Pumps will recycle back the settled sludge from Secondary Clarifiers to the Aeration Tank on a continuous basis. A tapping from the Return Sludge Pumps will waste excess activated sludge to the Gravity Sludge Thickener continuously/ intermittently as required.

Pipeline, Secondary Člarifier to Return Sludge Sump

Size Design Velocity Material of Construction Accessory Equipment	: i.e. :	600 NB 475.0 x 2/ 3600/ (Π/4 x 0.6 x 0.6) 0.93 M/s DI K7 Knife Edge Gate Valve/ 80 NB Flushing Connection (with Valve)

Individual Pump Delivery Lines

Size	:	300 NB
Design Velocity	:	475.0/ 3600/ (Π/4 x 0.3 x 0.3)
	i.e.	1.87 M/s
Material of Construction	:	DI K7
Accessory Equipment	:	Non Return Valve/ Knife Edge Gate Valve/
		Pressure Gauge

Combined Pump Delivery Header		Goutam Banerjeo, ru.i. Professor
Size Design Velocity	:	450 NB 475.0 x 2/ 3600/ (Π/4 x 0.45 x 0.45)
Material of Construction Accessory Equipment	i.e. : :	1.66 M/s DI K7 Isolation Knife Edge Gate Valve

PROCESS DESIGN CALCULATION FOR STP PLANT

Page 18

VM. TY

(Electrically Actuated)

Waste Sludge Line to Gravity Sludge Thickener

Size	:	100 NB
Design Velocity	:	33.0/ 3600/ (II/4 x 0.1 x 0.1) i.e. 1.17 M/s
Material of Construction	:	DI K7
Accessory Equipment	:	Knife Edge Gate Valve (Electrically
		Actuated)

17.0 GRAVITY SLUDGE THICKENER

No. Material of Construction Sludge Generation Design Sludge Loading Rate Diameter	:	1 RCC w/ Central Drive/ Scraper 7920.0 Kg/d, Dry Solid Basis 40.0 Kg/M ² -day (7920.0 Kg/d / 40.0 Kg/M ² -day x 4/[]) ^{1/2}
Side Water Depth Volume Thickened Sludge Concentration	i.e. : :	15.9 M 4.5 M Π/4 x 15.9 x 15.9 x 4.5 i.e. 893.5 M ³ 3.0 %
Thickened Sludge Flow Rate to Centrifuge Hydraulic Retention Time (w.r.t. Thickened Sludge)	: i.e. :	7920.0 Kg/d / (1000.0 Kg/M ³ x 0.03) 264.0 M ³ /d 893.5/ 264.0 i.e. 3.4 Days

:

:

:

:

:

:

:

:

18.0 CENTRIFUGE SHED

Sludge Flow Rate
Centrifuge Operation Hours
Centrifuge Capacity
(Required)

Nos.

Туре

No. Centrifuges Provided Centrifuge Type Centrifuge Capacity (Provided)

Centrifuge Feed Pumps

Deention 264.0 M³/day Indian Marin 18.0 Hours/day (Max) 264.0/ 18.0 i.e. 14.7 M³/Hour

2 (1 Working/ 1 Stand-By) Solid Bowl $15.0 \text{ M}^3/\text{Hour}$

Goutan Banerjee, Ph.D.

Professor

N & CN

ef Coil Engineering to of Techoology(B.H.U.) asi-221225 (NDIA

2 (1 Working, 1 Stand By) Helical Screw Positive Displacement

PROCESS DESIGN CALCULATION FOR STP PLANT

Capacity	:	15.0 M ³ /hour
Discharge Head	•	0.6 Kg/cm^2
0	•	0.0 Kg/cm

Note: The Centrifuge Feed Pumps will draw thickened sludge from the Gravity Sludge Thickener and feed the Solid Bowl Centrifuges continuously/ intermittently as required. The Gravity Sludge Thickener and Centrifuge Supernatant will be recycled back through gravity to the Terminal Pumping Station Wet Well.

Poly-Electrolyte Requirement (Max) Poly Solution Strength Poly Solution Flow Rate	1.e. 11.9 Kg : 0.1 %	000 x 0.001) i.e. 11.9 M ³ /day
No. Poly Tanks Poly Tank MOC Poly Tank Volume (Required) Poly Tank Plan Dimensions Poly Tank Side Water Depth Poly Tank Volume (Provided) Velocity Gradient Accessory	$\begin{array}{cccc} : & 2.0 \text{ M x} \\ : & 1.5 \text{ M} \\ : & 2.0 \text{ x} 2.0 \\ : & 200 \text{ s}^{-1} \end{array}$	i.e. 5.95 M ³ 2.0 M x 1.5 i.e. 6.0 M ³ i.e. OK Motor/ Worm Gear Box/ SS 304
No. Poly Dosing Pumps Pump Capacity Pump Discharge Head Pump MOC Centrifuge Shed Dimensions	2 (1 Wor 1000 LPI 2.0 Kg/cr PP	-
Plan Dimensions Ground Floor Height Top Floor Height	8.0 M x 6.0 M 4.0 M 4.5 M	

19.0 OUTFALL MANHOLE

No.		1
Motorial CO		1
Material of Construction	:	RCC
Diameter Side Water David	:	2.0 M
Side Water Depth	:	1.7 M

PROCESS DESIGN CALCULATION FOR STP PLANT

Note: Treated Sewage will be discharged from Outfall Manhole to disposal by Client.

Generice, Ph.D. Goulas ressor ii Engineering Te of Terisbology(D.H.U.) ar 221005 INDIA Departure Endisa Lustituy

PROCESS DESIGN CALCULATION FOR STP PLANT

ANNEXURE-1

22 MLD EXTENDED AERATION ACTIVATED SLUDGE SEWAGE TREATMENT PLANT AT HAJIPUR, BIHAR

SIZES OF MAJOR UNITS

DOC. NO. TT/BEI/HJ/1051/STP/A		P/A02	REV 01	DATED 30.11.2012
	UNIT	NOS.	DI	MENSIONS (M)
	Receiving Chamber	1	3.0 x 3.0	x 1.15 SWD + 7.4 FB
	Mechanical Coarse Screen Channel	1		$5 \times 1.1 \text{ SWD} + 0.5 \text{ FB}$
	Manual Coarse Screen Channel	1	5.0 x 0.8	5 x 1.1 SWD + 0.5 FB
	Raw Sewage Sump Wet Well	1		.45 SWD + 8.85 FB
	Stilling Chamber	1		x 3.95 SWD + 0.5 FB
	Mech Fine Screen Channels	2		x 1.0 SWD + 0.5 FB
	Mechanical Grit Chambers	2		x 0.9 SWD + 0.5 FB
	Parshall Flume Channel	1		x 0.95 SWD + 0.3 FB
	Aeration Tank Inlet Channel	1		SWD + 0.3 FB
	Aeration Tank Inlet Annular	1		$9 \times 0.8 \text{ SWD} + 0.4 \text{ FB}$
	Channel			
	Aeration Tank	1	47.4 ø x 5	.0 SWD + 0.5 FB
	Aeration Tank Outlet Chamber	1		x 7.45 SWD + 0.6 FB
÷ 4	Secondary Clarifier	1		.0 SWD + 0.5 FB
i - i :	Clarifier Outlet Channel	1		SWD + 0.65 FB
	Chlorine Contact Tank	1		0 SWD + 0.75 FB
	Chlorine Contact Tank Outlet Chamber	1		2.8 SWD + 0.95 FB
	Treated Sewage Channel	1		
	Outfall Manhole	1		WD + 1.0 FB
	Chlorination Room	1		SWD + 1.1 FB
	Chlorine Tonner Shed	1	5.0 x 4.0 x	
	eturn Sludge Sump	1	5.0 x 8.0 x	
	avity Sludge Thickener	1		5.5 SWD + 0.7 FB
	infuge Building (G + 1)	1		5 SWD + 0.5 FB
	Dosing Tanks	1	8.0 x 6.0 x	
	ss Chamber	2	2.0 x 2.0 x	1.5 SWD + 0.5 FB
	Man Holes	1	2.1 x 1.2 x	2.5 SWD + 2.35 FB
	Wer Shed	3	1.3 ø x 2.5	SWD + 0.4 FB
		1	6.0 x 10.0 z	x 5.5 HT

ANNEXURE-1

Administration Building/ MCC/ PLC Control Room/ Laboratory /Work Shop/ Store	1
Security Room	1
Open Store Yard	1
Parking Area	1
HT Panel/ Transformer Open	1
Area (By BUIDCO)	
DG Set Foundation	1

30.0 x 8.0 x 4.0 HT

3.0 x 3.0 x 3.0 HT 10.0 x 10.0 10.0 x 6.0 14.0 x 4.0

6.0 x 4.0

Goutage Banerjee, Ph.D. Departure ar of Technology (B.H.T.). Indiau Institute of the State of Technology (B.H.T.).

OF MAJOR UNITS FOR 22 MLD STP PLANT AT HAJIPUR

ect : Sewerage Network and 2		ion Ltd. Patna			
. Sewelage Network and A	: Sewerage Network and 22 MLD STP Plant For Hajipur Town				
ractor : Tri-Tech (Beijing) Compa					
Name : Hydraulic Design Calcu					
No. : TT/BEI/HJ/1051/STP/A03		DT.	13.05.2013		
O. PARAMETER		VALUE	UNIT		
DESIGN FLOWRATE					
Average Flow Rate, Q _A	1 -	22.000			
·		0.255	MLD		
Peaking Factor, PF	·		M ³ /s		
Peak Flow Rate, $Q_P = Q_A * PF$		2.250			
	· •	0.573	M³/s		
OUTFALL MANHOLE					
STP Site High Flood Level (Through Local E	nguiry)	47.000			
STP Approach Road Topographical Level		47.000	M		
STP Site Internal Road Level		47.000	M		
STP Unit Top of Structure Level (Minimum)	· · · · ·	47.300	M		
STP Building Plinth Level	:		М		
STP Site Finished Ground Level (Considered	: (t	47.300 46.400	M		
Outfall Manhole Top Water Level (Considere	ed) :	46.200	М		
Outfall Manhole Invert Level	:	44.400	М		
Outfall Manhole Side Water Depth	:	1.800	M		
Outfall Manhole Top of Structure Level Free Board	:	47.300	М		
	:	1.100	М		
CHANNEL, CHLORINE CONTACT TAN	K OUTLET CHAMBER TO OUT	FALL MANHOLE			
Design Flow Rate, QP		0 570	2		
Channel Width, W	•	0.573	M³/s		
Channel Side Water Depth 7	:	0.900	М		
Channel Velocity, $V = Q_P / (W * Z)$	•	0.600	М		
Manning Equation, $V = 1/n * R^{0.667} * S^{0.5}$		1.061	M/s		
Ce-Efficient of Roughness, n (CPHEEO Monu	ial)	0.014			
Sociectional Area, A = W * 7		0.540	2		
etted Perimeter, $P = ((Z * 2) + W)$	÷		M ²		
aulic Radius, R = A / P	. :	2.100	M		
	Gout	ProiCSOUS	ind		
	CO CO Properto	ment of Civil Eognae	3.H.U.)		
-		stimute of Techaoussy aranget-221005 FHDLA			
		•			
CONTRACTOR STIP Plant Hajipur					

100

Page 1 of 11

Fridion Slope, S (by Calculation)::0.00135MMChannel Length (Max), L::0.00135MMPridion Loss, H = S * L::0.007MExit Head Loss Factor, K::0.007MVelocity Head = V ² / 2g::0.007MChannel Loss H = K * V ² / 2g::0.007MChannel Top Water Level::0.067MChannel Top Water Level::46.3264MSay::0.067MChannel Top Water Level::46.300MChannel Top Of Structure Level::46.400MFree Board::47.300MFree Board::0.029MCCT Outlet Chamber Top Water Level::46.320MSay:::0.029MCCT Outlet Chamber Top Water Level::46.350MCCT Outlet Chamber Top Water Level::::46.350MCCT Outlet Chamber Top Of Structure Level::::::COT Outlet Chamber Top Of Structure Level::::::CCT Outlet Chamber Top Of Structure Level::::::CCT Outlet Chamber Top Of Structure Level::::::COT Outlet Chamber Top Of Structure Level::::::Outlet Chamber Top Of Structure Level:::::CT Outlet Chamber Top Of Structure Level:::::CT Outle	S.NO	. PARAMETER		VALUE	
Channel Length (Max), L Friction Loss, H _x = S * L Edit Head Loss Factor, K Velocity Head $= \sqrt{2}/2g$ Edit Head Loss H _x = K * $\sqrt{2}/2g$ Channel Top Water Level Say Channel Top Water Level Channel Top Water Level Channel Top Water Level Channel Top of Structure Level Entrance Head Loss Factor, K Channel Top of Structure Level Entrance Head Loss Factor, K, 1 Entrance Head Loss M, E, K, * $\sqrt{2}/2g$ CCT Outlet Chamber Top Water Level 46.329 M Say 46.329 M CCT Outlet Chamber Top Structure Level Chlorine Contact Tank Outlet Chamber TWL CCT Outlet Chamber Top of Structure Level 47.300 M Free Board Finished Ground Level 46.400 M Free Board Finished Ground Level 46.400 M Free Board Finished Ground Level 46.400 M CCT Outlet Chamber Top of Structure Level 46.400 M Free Board Finished Ground Level 46.400 M CCT Outlet Chamber Top of Structure Level 46.400 M CCT Outlet Chamber Top of Structure Level 46.400 M Free Board Finished Ground Level 46.400 M Cotool Level 46.400 M Chorine Contact Tank NUD, Z Chlorine Contact Tank SWD, Z Chlorine Contact Tank SWD, Z Chlorine Contact Tank NUD,		Friction Slope S (by Colculation)			UNII
Fridion Loss, H _p = S * L 5.000 M Exit Head Loss Factor, K 0.007 M Exit Head Loss H ₁ = K * V ² /20 0.067 M Total Head Loss H ₁ = K * V ² /20 0.0677 M Channel Top Water Level 0.064 M Say 0.067 M Clarifier Outlet Channel Invert Level 46.264 M Say 146.264 M Clarifier Outlet Channel Invert Level 46.300 M Channel Top Vater Level 46.300 M Channel Top of Structure Level 1.000 M Entrance Head Loss Factor, K ₁ 1.000 M Entrance Head Loss Factor, K ₁ 0.029 M CCT Outlet Chamber Top Water Level 46.329 M Say 2.0029 M CCT Outlet Chamber Top G Structure Level 46.350 M CCT Outlet Chamber Top of Structure Level 46.350 M M CCT Outlet Chamber Top of Structure Level 46.350 M CCT Outlet Chamber Top of Structure Level 46.350 M M M M CT Outlet Chamber Top of Structure Level			:	0.00135	M/M
Exit Head Loss Factor, K Velocity Head = $\sqrt{7}/2g$ Exit Head Loss H, et $\sqrt{7}/2g$ Charnel Top Water Level Say Charnel Top Water Level Charnel Head Loss Factor, K ₁ Charnel Head Loss Factor, K ₁ Design Flow Rate, Q _p Charnel Contact Tank Water Level Charnel Contact Tank Water Level Charnel Contact Tank Kouter Weir Length, L Charnel Contact Tank Kouter Level Charnel Contact Tank Top Water Level Charnel Contact Tank Top Structure Level Charnel Contact Tank		Friction Loss, $H_F = S * L$:	5.000	М
Velocity Head Loss H _a = K * V ² /2g : 1.000 Exit Head Loss H _a = K * V ² /2g : 0.057 M Total Head Loss In Chamel, H _a = H _a + H _k : 0.064 M Channel Top Water Level : 46.204 M Say : : 46.300 M Charnel Top Ottlet Channel Invert Level : : 46.300 M Finished Ground Level :			:	0.007	М
Exit Head Loss H, E K* $\sqrt{P} 2g$ 0.057 M Total Head Loss in Channel, H ₂ H ₈ + H ₄ 0.057 M Channel Top Water Level 0.064 M Say 46.264 M Carifier Outlet Channel Invert Level 46.300 M Channel Top of Structure Level 46.400 M Channel Top of Structure Level 46.400 M Channel Top of Structure Level 46.400 M Free Board 1.000 M Entrance Head Loss Factor, Ki 0.029 M CCT Outlet Chamber Top Water Level 46.350 M Say 46.350 M Say COT Outlet Chamber Top Water Level 46.350 M CCT Outlet Chamber Top of Structure Level 46.350 M CCT Outlet Chamber Top of Structure Level 46.350 M CCT Outlet Chamber Top of Structure Level 46.350 M CCT Outlet Chamber Top of Structure Level 46.400 M CT Outlet Chamber Top of Structure Level 46.400 M Pree Board 1.000 M M Free Board			:	1.000	
Total Head Loss in Channel, $H_1 = H_p + H_k$ 0.067MChannel Top Water Level0.064MSay46.284MClarifier Outlet Channel Invert Level46.300MFinished Ground Level46.400MChannel Top of Structure Level46.400MChannel Top of Structure Level46.400MChannel Top of Structure Level46.400MEntrance Head Loss Factor, K,1.000MEntrance Head Loss Factor, K,0.029MCCT Outlet Chamber Top Water Level46.329MSay46.350MCCT Outlet Chamber Top Water Level46.350MCCT Outlet Chamber Top Water Level46.350MCCT Outlet Chamber Top Utater Chamber TWL46.350MCCT Outlet Chamber Top of Structure Level46.350MCCT Outlet Chamber Top of Structure Level46.350MCCT Outlet Chamber Top of Structure Level46.400MCT Outlet Chamber Top of Structure Level46.400MFree Board0.950MFree Board1.000MSegin Flow Rate, Qp0.573M ³ /sChlorine Contact Tank Outlet Weir Length, L4.000MRectangular Weir Equation, Qp = 2/3*C*(2g)*0.5*L*H*1.5 (CPHEEO4.000Marcal)Ca = (0.602 + (0.075 * H/P))1.000Head Over Rectangular Weir Level0.200MChlorine Contact Tank Unter Level46.350MChlorine Contact Tank Top of Structure Level0		Exit Head Loss $H_1 = K * V^2/2g$:	0.057	М
Channel Top Water Level 0.064 MSay46.264MSay46.300MClarifier Outlat Channel Invert Level45.700MFinished Ground Level46.300MChannel Top of Structure Level46.400MFree Board1.000MEntrance Head Loss Factor, K11.000MEntrance Head Loss Factor, K10.029MCCT Outlet Chamber Top Water Level46.329MSay46.350MCCT Outlet Chamber Top Water Level46.350MCCT Outlet Chamber Top Water Level46.350MCCT Outlet Chamber Top Water Level46.350MCCT Outlet Chamber Invert Level (Considered)43.550MCCT Outlet Chamber Top of Structure Level46.400MCTO Outlet Chamber Top of Structure Level46.400MFree Board0.950MFree Board0.950MFinished Ground Level46.400MJohorine Contact Tank SWD, Z3.000MChlorine Contact Tank SWD, Z3.000MChlorine Contact Tank Outlet Weir Length, L4.000MRectangular Weir Equation, $Q_P = 2/3^* C_s^*(2g)^0.5^* L^* M^4.5 (CPHEEOMManualCe = (0.602 + (0.075 * H /P))0.185MHead Over Rectangular Weir Level46.350MChlorine Contact Tank Invert Level46.350MChlorine Contact Tank Invert Level46.355MChlorine Contact Tank Invert Level<$:	0.057	М
Say : : : : : : : : : : : : : : : : : : :			:	0.064	М
Clarifier Outlet Channel Invert Level:46.300MFinished Ground Level:46.700MChannel Top of Structure Level:46.400MChannel Top of Structure Level:47.300MEntrance Head Loss Factor, K,:1.000MEntrance Head Loss H_L = K, * V ² /2g:0.500MCCT Outlet Chamber Top Water Level:46.329MSay:46.350MCCT Outlet Chamber Top Water Level:46.350MCCT Outlet Chamber Invert Level (Considered):43.550MCCT Outlet Chamber Side Water Depth:2.800MCCT Outlet Chamber Top of Structure Level:46.300MCCT Outlet Chamber Top of Structure Level:46.400M.0CHLORINE CONTACT TANK::3.000MFree Board:0.950MM.0CHLORINE CONTACT TANK::3.000M.0CHLORINE CONTACT TANK::3.000M.0CHLORINE CONTACT TANK::3.000M.0CHLORINE CONTACT TANK::3.000M.0CHLORINE CONTACT TANK::3.000M.0CHLORINE CONTACT TANK:::3.000M.0Chlorine Contact Tank SWD, Z::3.000M.0Ce = (0.602 + (0.075 + H P))::::<			:	46.264	м
Finished Ground Level: $45,700$ MChannel Top of Structure Level: $46,400$ MChannel Top of Structure Level: $47,300$ MEntrance Head Loss Factor, K1:1.000MEntrance Head Loss HL = K1 * $\sqrt{2}/2g$:0.029MCCT Outlet Chamber Top Water Level: 46.329 MSay:: 46.350 MContract Tank Outlet Chamber TVL: 46.350 MCCT Outlet Chamber Invert Level (Considered):: 43.550 MCCT Outlet Chamber Side Water Depth:2.800MCCT Outlet Chamber Top of Structure Level:: 46.400 MCT Outlet Chamber Top of Structure Level:: 46.400 MFinished Ground Level:::: 46.400 MOthorine Contact Tank SWD, ZChlorine Contact Tank SWD, Z::::::Chlorine Contact Tank SWD, Z::::::::Chlorine Contact Tank Quidt Weir Length, L:::<			:	46.300	М
Channel Top of Structure Level::46.400MFree Board::47.300MEntrance Head Loss Factor, K1:1.000MEntrance Head Loss H1 = K1 * $\sqrt{2}/2g$:0.500CCT Outlet Chamber Top Water Level:0.029MSay:46.329MSay:46.350MChlorine Contact Tank OUTLET CHAMBERChlorine Contact Tank OUTLET CHAMBERCCT Outlet Chamber Invert Level (Considered):46.350MCCT Outlet Chamber Side Water Depth:2.800MCCT Outlet Chamber Top of Structure Level:46.400MConduct Contact Tank Outlet Clamber Side Water DepthCCT Outlet Chamber Top of Structure Level:46.400MFree BoardFinished Ground Level::46.400MOthorine Contact Tank SWD, Z:::Chlorine Contact Tank Outlet Weir Length, L::::Design Flow Rate, Qp:::::Chlorine Contact Tank SWD, Z:::::Chlorine Contact Tank Outlet Weir Length, L::::Ce (0.602 + (0.075 * H /P)):::::Head Over Rectangular Weir, H (by Calculation)::0.185MChlorine Contact Tank Top of Structure Level:::::Chlorine Contact Tank			:	45.700	М
Free Board:47.300MEntrance Head Loss Factor, K11.000MEntrance Head Loss H1 = K1 * $\sqrt{2}/2g$ 0.500CCT Outlet Chamber Top Water Level0.029MSay:46.329MSay:46.350MChlorine Contact Tank Outlet Chamber TWL:46.350MCCT Outlet Chamber Invert Level (Considered):43.550MCCT Outlet Chamber Invert Level (Considered):43.550MCCT Outlet Chamber Top of Structure Level:46.400MFree Board:0.950MFree Board:46.400MFree Board:3.000MFree Board:46.400MJointe Contact Tank SWD, Z:3.000MChlorine Contact Tank Top Water Level:43.550MManual):0.185MMChlorine Contact Tank Invert Level:43.550MChlorine Contact Tank Invert Level:43.550MChlorine Contact Tank Invert Level:46.365MChlorine Contact Tank Top Vater Level:46.365MChlori			:	46.400	М
Entrance Head Loss Factor, K ₁ : 0.000 M Entrance Head Loss H ₄ = K ₁ * $V^2/2g$: 0.029 M CCT Outlet Chamber Top Water Level : 46.329 M Say : 46.350 M 1.0 CHLORINE CONTACT TANK OUTLET CHAMBER Chlorine Contact Tank Outlet Chamber TWL : 46.350 M CCT Outlet Chamber Invert Level (Considered) : 43.550 M CCT Outlet Chamber Side Water Depth : 2.800 M CCT Outlet Chamber Top of Structure Level : 47.300 M Free Board : 0.950 M Finished Ground Level : 46.400 M 1.0 CHLORINE CONTACT TANK Design Flow Rate, Q _p : 0.573 M ³ /s Chlorine Contact Tank SWD, Z : 3.000 M Chlorine Contact Tank Outlet Weir Length, L : 4.000 M Rectangular Weir Equation, Q _p = 2/3*C _* *(2g)*0.5*L*H^1.5 (CPHEEO Marnual) Ce = (0.602 + (0.075 * H /P)) Head Over Rectangular Weir, H (by Calculation) : 0.185 M Free Fail Across Weir (Considered) : 0.200 M Chlorine Contact Tank Top Water Level : 46.350 M Chlorine Contact Tank Top Structure Level : 46.350 M Chlorine Contact Tank Top of Structure Level : 46.365 M Chlorine Contact Tank Top of Structure Level : 46.365 M Chlorine Contact Tank Top of Structure Level : 46.365 M Chlorine Contact Tank Top of Structure Level : 47.300 M Chlorine Contact Tank Top of Structure Level : 47.300 M Chlorine Contact Tank Top of Structure Level : 47.300 M Chlorine Contact Tank Top of Structure Level : 47.300 M Chlorine Contact Tank Top of Structure Level : 47.300 M Chlorine Contact Tank Top of Structure Level : 47.300 M Chlorine Contact Tank Top of Structure Level : 47.300 M Chlorine Contact Tank Top of Structure Level : 47.300 M Chlorine Contact Tank Top of Structure Level : 47.300 M Chlorine C			:	47.300	М
Entrance Head Loss $H_{L} = K_{1} * V^{2}/2g$ CCT Outlet Chamber Top Water Level Say 46.329 M Say 46.350 M 46.350 M 46.350 M CCT Outlet Chamber Top Other TWL CCT Outlet Chamber Invert Level (Considered) CCT Outlet Chamber Invert Level (Considered) CCT Outlet Chamber Top of Structure Level 47.300 M Free Board CCT Outlet Chamber Top of Structure Level 47.300 M Free Board CHLORINE CONTACT TANK Design Flow Rate, Q_{p} Chlorine Contact Tank SWD, Z Chlorine Contact Tank SWD, Z Chlorine Contact Tank SWD, Z Chlorine Contact Tank SWD, Z Chlorine Contact Tank Cutlet Weir Length, L Reetangular Weir Equation, $Q_{p} = 2/3^{\circ}C_{*}^{*}(2g)^{\circ}0.5^{*}L^{*}H^{A}1.5$ (CPHEEO Manual) Ce = (0.602 + (0.075 * H / P)) Head Over Rectangular Weir, H (by Calculation) Free Fall Across Weir (Considered) Chlorine Contact Tank Top Water Level Chlorine Contact Tank Top Water Level Chlorine Contact Tank Top Water Level Chlorine Contact Tank Top Structure Level Chlorine Contact Tank Top of Structure Level Contact Tank Top of Structure Level Con			:	1.000	м
CCT Outlet Chamber Top Water Level 0.029 M Say 46.329 M Say 46.350 M 4.0 CHLORINE CONTACT TANK OUTLET CHAMBER 46.350 M CT Outlet Chamber Invert Level (Considered) 43.550 M CCT Outlet Chamber Side Water Depth 2.800 M CCT Outlet Chamber Top of Structure Level 47.300 M Free Board 0.950 M Finished Ground Level 46.400 M .0 CHLORINE CONTACT TANK 46.400 M .0 CHLORINE CONTACT TANK			:	0.500	
Say 46.350 M 46.350 M 1.0 CHLORINE CONTACT TANK OUTLET CHAMBER Chlorine Contact Tank Outlet Chamber TWL 46.350 M CCT Outlet Chamber Invert Level (Considered) 43.550 M CCT Outlet Chamber Side Water Depth 2.800 M CCT Outlet Chamber Top of Structure Level 47.300 M Free Board 2.950 M Finished Ground Level 46.400 M CHLORINE CONTACT TANK Design Flow Rate, Q _p 0.573 M ³ /s Chlorine Contact Tank SWD, Z 3.000 M Rectangular Weir Equation, Q _p = $2/3^{\circ}C_{*}^{*}(2g)^{\circ}0.5^{\circ}L^{*}H^{\wedge}1.5$ (CPHEEO Manual) Ce = $(0.602 + (0.075^{\circ}H/P))$ Head Over Rectangular Weir, H (by Calculation) 0.185 M Chlorine Contact Tank Top Water Level 46.550 M Chlorine Contact Tank Top Water Level 46.550 M Chlorine Contact Tank Top Water Level 46.550 M Chlorine Contact Tank Top of Structure Level 46.550 M Chlorine Contact Tank Top of Structure Level 46.400 M Chlorine Contact Tank Top of Structure Level 46.400 M Chlorine Contact Tank Top of Structure Level 46.400 M Chlorine Contact Tank Top of Structure Level 46.550 M Chlorine Contact Tank Top of Structure Level 46.400 M Chlorine Contact Tank Top of Structure Level 46.400 M Chlorine Contact Tank Top of Structure Level 46.400 M Chlorine Contact Tank Top of Structure Level 47.300 M Corte of Risonerine, Ph. ³ . M Corte of Chlorine Contact Tank Top of Structure Level 47.300 M Chlorine Contact Tank Top of Structure Level 47.300 M Corte of Risonerine, Ph. ³ . M Corte of Chlorine Contact Tank Top of Structure Level 47.300 M Corte of Chlorine Contact Tank Top of Structure Level 47.300 M Corte of Chlorine Contact Tank Top of Structure Level 47.300 M Corte of Risonerine, Ph. ³ . M Corte of Chlorine Contact Tank Top of Structure Level 47.300 M Corte of Chlorine Contact Tank Top of Structure Level 47.300 M Corte of Chlorine Contact Tank Top of Structure Level 47.300 M Corte of Chlorine Contact Tank Top of Structure Level 47.300 M Corte of Chlorine Contact Tank Top of Structure Level 47.300 M Cort			:	0.029	М
46.350 M 4.0 CHLORINE CONTACT TANK OUTLET CHAMBER Chlorine Contact Tank Outlet Chamber TWL 46.350 M CCT Outlet Chamber Invert Level (Considered) 43.550 M CCT Outlet Chamber Top of Structure Level 47.300 M CCT Outlet Chamber Top of Structure Level 47.300 M Free Board 0.950 M Finished Ground Level 46.400 M .0 CHLORINE CONTACT TANK 46.400 M .0 CHLORINE CONTACT TANK 3.000 M .0 Chlorine Contact Tank SWD, Z 3.000 M .0 Rectangular Weir Equation, Qp = 2/3*C*(2g)^0.5*L*H^1.5 (CPHEEO M Manual) Ce = (0.602 + (0.075 * H / P)) M M Head Over Rectangular Weir (Foy Calculation) 0.185 M Free Fail Across Weir (Considered) 0.200 M Chlorine Contact Tank Invert Level 46.350 M Chlorine Contact Tank Invert Level 46.355 M Chlorine Contact Tank Top Water Level 46.350 M Chlorine Contact Tank Top of Structure Level 46.365			:	46.329	м
Chlorine Contact Tank Outlet Chamber TWL : 46.350 M CCT Outlet Chamber Invert Level (Considered) : 43.550 M CCT Outlet Chamber Side Water Depth : 2.800 M CCT Outlet Chamber Top of Structure Level : 47.300 M Free Board : 0.950 M Finished Ground Level : 46.400 M .0 CHLORINE CONTACT TANK		ouy -	:	46.350	M
Chlorine Contact Tank Outlet Chamber TWL : 46.350 M CCT Outlet Chamber Nivert Level (Considered) : 43.550 M CCT Outlet Chamber Side Water Depth : 2.800 M CCT Outlet Chamber Top of Structure Level : 47.300 M Free Board : 0.950 M Finished Ground Level : 46.400 M Jona CHLORINE CONTACT TANK : 0.573 M ⁹ /s Chlorine Contact Tank SWD, Z : 0.573 M ⁹ /s Chlorine Contact Tank Outlet Weir Length, L : 3.000 M Rectangular Weir Equation, Qp = 2/3°Ca*(2g)?0.5*L*HA1.5 (CPHEEO Manual) Ce = (0.602 + (0.075 * H /P)) Head Over Rectangular Weir, H (by Calculation) : 0.185 M Free Fall Across Weir (Considered) : 0.200 M Chlorine Contact Tank Invert Level : 43.550 M Chlorine Contact Tank Invert Level : 43.550 M Chlorine Contact Tank Top Water Level : 43.550 M Chlorine Contact Tank Invert Level : 46.365 M	4.0	CHLORINE CONTACT TANK OUTLET CHAMBER			
CCT Outlet Chamber Invert Level (Considered) 46.380 MCCT Outlet Chamber Side Water Depth 2.800 MCCT Outlet Chamber Top of Structure Level 2.800 MFree Board 0.950 MFinished Ground Level 46.400 MO CHLORINE CONTACT TANKDesign Flow Rate, Q_p Chlorine Contact Tank SWD, ZChlorine Contact Tank SWD, ZChlorine Contact Tank Outlet Weir Length, LRectangular Weir Equation, $Q_p = 2/3^*C_e^*(2g)^{0.5*L*H^{A}1.5}$ (CPHEEOManual) $Ce = (0.602 + (0.075 * H /P))$ Head Over Rectangular Weir, H (by Calculation) 0.185 Free Fail Across Weir (Considered) 0.200 Chlorine Contact Tank Invert Level 46.550 MChlorine Contact Tank Top Water LevelChlorine Contact Tank Top Structure Level 46.385 MChlorine Contact Tank Top of Structure LevelChlorine Contact Tank Top of Structure Level 46.400 Chlorine Contact Tank Top of Structure Level <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
CCT Outlet Chamber Invert Level (Considered) :: 43.550 M CCT Outlet Chamber Side Water Depth :: 2.800 M CCT Outlet Chamber Top of Structure Level :: 47.300 M Free Board :: 0.950 M Finished Ground Level :: 46.400 M .0 CHLORINE CONTACT TANK :: 0.573 M³/s Chlorine Contact Tank SWD, Z :: 3.000 M Chlorine Contact Tank Outlet Weir Length, L :: 4.000 M Rectangular Weir Equation, Qp = 2/3*Ce*(2g)^0.5*L*H^1.5 (CPHEEO M M Manual) Ce = (0.602 + (0.075 * H /P)) Head Over Rectangular Weir, H (by Calculation) : 0.185 M Free Fail Across Weir (Considered) : 0.200 M M Chlorine Contact Tank Invert Level : 46.365 M Chlorine Contact Tank Top of Structure Lev			:	46.350	
CC1 Outlet Chamber Side Water Depth 1.2.800 M CCT Outlet Chamber Top of Structure Level 47.300 M Free Board 0.950 M Finished Ground Level 46.400 M .0 CHLORINE CONTACT TANK		CCI Outlet Chamber Invert Level (Considered)	:		
Cc1 Outlet Chamber Top of Structure Level : 47.300 M Free Board : 0.950 M Finished Ground Level : 46.400 M .0 CHLORINE CONTACT TANK . . Design Flow Rate, Qp : 0.573 M³/s Chlorine Contact Tank SWD, Z : 3.000 M Chlorine Contact Tank Outlet Weir Length, L : 4.000 M Rectangular Weir Equation, Qp = 2/3°Ce*(2g)^0.5*L*H^1.5 (CPHEEO M M Manual) Ce = (0.602 + (0.075 * H /P)) . . . Head Over Rectangular Weir, H (by Calculation) : 0.185 M . Free Fall Across Weir (Considered) : 0.200 M . Chlorine Contact Tank Invert Level : 46.3650 M . Chlorine Contact Tank Invert Level : 46.365 M . Chlorine Contact Tank Invert Level : 46.365 M . Chlorine Contact Tank Top of Structure Level : 46.400 M . Chlorine Contact Tank Top of Structure Level : 47.300 M . . Chlorine Contact Tank Top of Structure Level : 46.400 <t< td=""><td></td><td>CCT Outlet Chamber Side Water Depth</td><td>•</td><td></td><td></td></t<>		CCT Outlet Chamber Side Water Depth	•		
Free Board 0.950 M Finished Ground Level 0.950 M .0 CHLORINE CONTACT TANK 46.400 M Design Flow Rate, Qp 0.573 M³/s Chlorine Contact Tank SWD, Z 3.000 M Chlorine Contact Tank Outlet Weir Length, L 4.000 M Rectangular Weir Equation, Qp = 2/3*Ce*(2g)^0.5*L*H^1.5 (CPHEEO M Manual) Ce = (0.602 + (0.075 * H /P)) Head Over Rectangular Weir, H (by Calculation) 0.185 M Free Fall Across Weir (Considered) 0.200 M M Chlorine Contact Tank Invert Level 46.550 M Chlorine Contact Tank Invert Level 46.3655 M Chlorine Contact Tank Invert Level 46.3655 M Chlorine Contact Tank Top of Structure Level 46.400 M Chlorine Contact Tank Top of Structure Level 47.300 M Free Board 47.300 M Generating Contact Tank Top of Structure Level 47.300 M Free Board 47.300 M Generatinger Bannaering		CCT Outlet Chamber Top of Structure Level			
Finished Ground Level : 46.400 M .0 CHLORINE CONTACT TANK					
.0 CHLORINE CONTACT TANK Design Flow Rate, Q _p : 0.573 M ³ /s Chlorine Contact Tank SWD, Z : 3.000 M Chlorine Contact Tank Outlet Weir Length, L : 4.000 M Rectangular Weir Equation, Q _p = 2/3*C _e *(2g)^0.5*L*H^1.5 (CPHEEO Manual) Ce = (0.602 + (0.075 * H /P)) Head Over Rectangular Weir, H (by Calculation) : 0.185 M Free Fall Across Weir (Considered) : 0.200 M Chlorine Contact Tank Top Water Level : 46.550 M Chlorine Contact Tank Invert Level : 43.550 M Outlet Weir Lip Level : 46.365 M Finished Ground Level : 46.365 M Free Board : Government of Civil Example on M Free Board : Government of Civil Example on M Contact Tank Top of Structure Level : 47.300 M Chlorine Contact Tank Top of Structure Level : 47.300		Finished Ground Level	:		
Design Flow Rate, Qp : 0.573 M³/s Chlorine Contact Tank SWD, Z : 3.000 M Chlorine Contact Tank Outlet Weir Length, L : 4.000 M Rectangular Weir Equation, Qp = 2/3*Ce*(2g)^0.5*L*H^1.5 (CPHEEO M M Manual) Ce = (0.602 + (0.075 * H /P))	.0	CHLORINE CONTACT TANK			IVF
Chlorine Contact Tank SWD, Z : 0.573 M³/s Chlorine Contact Tank Outlet Weir Length, L : 3.000 M Rectangular Weir Equation, Q _p = 2/3*C _e *(2g)^0.5*L*H^1.5 (CPHEEO Manual) M Ce = (0.602 + (0.075 * H /P)) Head Over Rectangular Weir, H (by Calculation) : 0.185 M Free Fall Across Weir (Considered) : 0.200 M Chlorine Contact Tank Top Water Level : 46.550 M Chlorine Contact Tank Invert Level : 46.365 M Outlet Weir Lip Level : 46.400 M Finished Ground Level : 46.400 M Free Board : 47.300 M					
Chlorine Contact Tank SWD, Z : 3.000 M Chlorine Contact Tank Outlet Weir Length, L : 4.000 M Rectangular Weir Equation, Q _P = 2/3*C _e *(2g)^0.5*L*H^1.5 (CPHEEO M M Manual) Ce = (0.602 + (0.075 * H /P)) M M Head Over Rectangular Weir, H (by Calculation) : 0.185 M Free Fall Across Weir (Considered) : 0.200 M Chlorine Contact Tank Top Water Level : 46.550 M Chlorine Contact Tank Invert Level : 43.550 M Outlet Weir Lip Level : 46.365 M Finished Ground Level : 46.400 M Free Board : 47.300 M Professor M Professor Department of Civil Engineering M Professor		Design Flow Rate, Q _P	•	0 572	2
Chlorine Contact Tank Outlet Weir Length, L 3.000 M Rectangular Weir Equation, Q _P = 2/3*C _e *(2g)^0.5*L*H^1.5 (CPHEEO 4.000 M Manual) Ce = (0.602 + (0.075 * H /P)) 1.0185 M Head Over Rectangular Weir, H (by Calculation) : 0.185 M Free Fall Across Weir (Considered) : 0.200 M Chlorine Contact Tank Top Water Level : 46.550 M Chlorine Contact Tank Invert Level : 46.365 M Outlet Weir Lip Level : 46.365 M Finished Ground Level : 46.400 M Chlorine Contact Tank Top of Structure Level : 47.300 M Free Board : 47.300 M		Chlorine Contact Tank SWD, Z	•	·	M³/s
Rectangular Weir Equation, Q _P = 2/3*C _e *(2g)^0.5*L*H^1.5 (CPHEEO M Manual) Ce = (0.602 + (0.075 * H /P)) Head Over Rectangular Weir, H (by Calculation) : 0.185 M Free Fall Across Weir (Considered) : 0.200 M Chlorine Contact Tank Top Water Level : 46.550 M Chlorine Contact Tank Invert Level : 46.365 M Outlet Weir Lip Level : 46.365 M Finished Ground Level : 46.400 M Chlorine Contact Tank Top of Structure Level : 47.300 M Free Board : 47.300 M		Chlorine Contact Tank Outlet Weir Length, I	:		М
Ce = (0.602 + (0.075 * H /P)) Head Over Rectangular Weir, H (by Calculation) : 0.185 M Free Fall Across Weir (Considered) : 0.200 M Chlorine Contact Tank Top Water Level : 46.550 M Chlorine Contact Tank Invert Level : 43.550 M Outlet Weir Lip Level : 46.365 M Finished Ground Level : 46.400 M Chlorine Contact Tank Top of Structure Level : 47.300 M Free Board : 47.300 M		Rectangular Weir Equation, $Q_p = 2/3^{\circ}C_{*}^{*}(2q)^{\circ}0.5^{*}1^{*}H^{\circ}1.5^{\circ}(2q)^{\circ}0.5^{*}1^{*}H^{\circ}1.5^{\circ}(2q)^{\circ}0.5^{*}1^{*}H^{\circ}1.5^{\circ}(2q)^{\circ}0.5^{*}1^{*}H^{\circ}1.5^{\circ}(2q)^{\circ}0.5^{*}1^{*}H^{\circ}1.5^{\circ}(2q)^{\circ}0.5^{*}1^{*}H^{\circ}1.5^{\circ}(2q)^{\circ}0.5^{*}1^{*}H^{\circ}1.5^{\circ}(2q)^{\circ}0.5^{*}1^{*}H^{\circ}1.5^{\circ}(2q)^{\circ}0.5^{*}1^{*}H^{\circ}1.5^{\circ}(2q)^{\circ}0.5^{*}1^{*}H^{\circ}1.5^{\circ}(2q)^{\circ}0.5^{*}1^{*}H^{\circ}1.5^{\circ}(2q)^{\circ}0.5^{*}1^{*}H^{\circ}1.5^{\circ}(2q)^{\circ}0.5^{*}1^{*}H^{\circ}1.5^{\circ}(2q)^{\circ}0.5^{*}1^{*}H^{\circ}1.5^{\circ}0.5^{\circ}$:	4.000	М
Head Over Rectangular Weir, H (by Calculation) : 0.185 M Free Fall Across Weir (Considered) : 0.200 M Chlorine Contact Tank Top Water Level : 46.550 M Chlorine Contact Tank Invert Level : 43.550 M Outlet Weir Lip Level : 46.365 M Finished Ground Level : 46.400 M Chlorine Contact Tank Top of Structure Level : 47.300 M Free Board : . . M Department of Civil Engineering Department of Civil Engineering Department of Civil Engineering		(handdi)			
Free Fall Across Weir (Considered) 10.00 M Chlorine Contact Tank Top Water Level 20.200 M Chlorine Contact Tank Invert Level 46.550 M Outlet Weir Lip Level 43.550 M Finished Ground Level 46.365 M Chlorine Contact Tank Top of Structure Level 46.400 M Free Board 46.400 M Outlet Weir Lip Level 46.400 M Chlorine Contact Tank Top of Structure Level 46.400 M Free Board 46.400 M		Head Over Rectangular Wein H (In a characteria			
Chlorine Contact Tank Top Water Level Chlorine Contact Tank Invert Level Outlet Weir Lip Level Finished Ground Level Chlorine Contact Tank Top of Structure Level Free Board Government of Civil Engineering Department of Civil Engineering Department of Civil Engineering Department of Civil Engineering Department of Civil Engineering		Free Fall Across Woir (Constitution)	:	0.185	М
Chlorine Contact Tank Invert Level : 46.550 M Outlet Weir Lip Level : 43.550 M Finished Ground Level : 46.365 M Chlorine Contact Tank Top of Structure Level : 46.400 M Free Board : 46.400 M Upper term of Civil Engineering : Professor M Department of Civil Engineering Department of Civil Engineering M		Chlorine Contact Tork Tork Weine Considered)	:	0.200	
Outlet Weir Lip Level 1 43.550 M Finished Ground Level 2 46.365 M Chlorine Contact Tank Top of Structure Level 2 46.400 M Free Board 47.300 M M Professor M M M Department of Civil Engineering Department of Civil Engineering M	. (Chlorine Contact Tank Top Water Level	:	46.550	
Finished Ground Level Chlorine Contact Tank Top of Structure Level Free Board Gostant Stonerjee, Ph.D. M Professor Depatheent of Civil Engineering Depatheent of Civil Engineering Depatheent of Civil Engineering	(Outlet Weir Lin Lovel	:	43.550	
Chlorine Contact Tank Top of Structure Level Free Board Government of Civil Engineering Deputtment of Civil Engineering Deputtment of Civil Engineering			:	46.365	
Free Board Gost and Top Professor M Professor Department of Civil Engineering Department of Civil Engineering Department of Civil Engineering			•	46.400	
Gostand. 750nerjee, Ph.17. Professor Department of Civil Engineering Department of Civil Engineering	. F	ree Board	:	47.300	
Department of Civil Engineering	•		Cont	an 8. 750n erjee, Ph.D.	
Department of Civil Engineering adian Department of Civil Engineering			Crupen	Protesta	12
adien Istatuse of 21095 INDIA			Depart	ment of Civil Engliseri	1.0.5
A CONTRACT OF THE OWNER OWNER OF THE OWNER			Al asiba B	Tabasi-821095 INDIA	
TI-TRI-	•	No.	•]		
		is with	1 1		
					۰.

/Ciralic Calculation for STP Plant Hajipur

S.NO. PARAMETER

.0

VALUE

UNIT

6.0 CHANNEL, SECONDARY CLARIFIER TO CHLORINE CONTACT TANK

Design Flow Rate, Q _P			
Channel Width, W	:	0.573	M³/s
Channel Side Water Depth, Z	:	0.900	. M
Channel Velocity, $V = Q_P / (W * Z)$:	0.600	М
Manning Equation, $V = 1/n * R^{0.667} * S^{0.5}$:	1.061	M/s
Co-Efficient of Roughness, n (CPHEEO Manual)		0.044	
Cross-Sectional Area, A = W * Z		0.014	
Wetted Perimeter, $P = ((Z * 2) + W)$:	0.540 2.100	M ²
Hydraulic Radius, $R = A / P$	•	0.257	М
Friction Slope, S (by Calculation)	· .	0.00135	M
Channel Length (Max), L	•	10.000	M/M
Friction Loss, $H_F = S * L$:	0.014	M
Exit Head Loss Factor, K	:	1.000	IVI
Velocity Head = $V^2 / 2g$:	0.057	м
Exit Head Loss $H_L = K * V^2 / 2g$:	0.057	M
Total Head Loss in Channel, $H_L = H_F + H_K$:	0.071	M
Clarifier - CCT Tank Channel Top Water Level	:	46.621	M
Say	:	46.650	M
Clarifier Outlet Channel Invert Level	:	4€.050	М
Finished Ground Level	:	46.400	M
Channel Top of Structure Level	:	47.300	М
Free Board	:	0.650	М
SECONDARY CLARIFIER LAUNDER			
Secondary Clarifier Diameter, D		44.700	
Design Peak Flow Rate, Q _P	•	0.573	M
Design Flow Rate/ Half Launder, $Q = Q_P / 2$	•		M³/s
Peripheral Launder Width, W	:	0.286	M³/s
Camp Equation (for Weir Launder Hydraulic Profile)	:	0.800	М
$H_0 = (yc^2 + 2q^2/gy_c + fLq^2/12grd)^{0.5}$			
H ₀ - Upstream Water Depth			
y₀ - Minimum Downstream Water Depth i.e. Critical Depth (under Ideal Conditions)	I		
q - (Flow Rate/ Half Launder) / Launder Width		0.358	3 ··· · ·
g - Acceleration due to Gravity		9.810	M³/M/s
f - Darcy Weissbach Friction Factor (CPHEEO Manual)		0.020	M/s ²
L - Half Weir Launder Length = $\Pi * D/2$		70.224	м
r - Mean Hydraulic Radius	-	Gouppin Baner	
d - Mean Side Water Depth		/ Profess	
	CO. TD.	Department of Civi lian Institute of The Venasioni-3220] Engineering Innology(B.H.U.)

Page 3 of 11

21-19

S.NO.	PARAMETER		
		VALUE	UNIT
	Calculate Critical Depth $y_c = (q^2/g)^{(1/3)}$		
	Considering Non-Ideal Conditions, $y_c = 0.55$ (assumed)	0.236	М
	Calculate H ₀ (w/o Friction Loss), H ₀ = $(y_c^2 + 2q^2/gy_c) ^0.5$: 0.550	M
		: 0.592	М
	Estimate H ₀ (w/ Friction) = H ₀ (w/o Friction) + 0.16 * (H ₀ (w/o Friction) - y _c) Estimate d = (H ₀ (w/ Friction) + y _c) / 2	: 0.598	М
	Estimate $r = (W \times d) / (W + 2 * d)$: 0.574	М
	Calculate $H_0 = (y_c^2 + 2q^2/gy_c + fLq^2/12grd)^{0.5}$: 0.236	М
	Drop in Launder Water Level = $H_0 - y_c$	0.601	М
	Downstream Velocity, $V_D = (Q_P/2) / (W^*y_c)$	0.051	М
	Downstream Velocity Head = $VD^2/2g$: 0.651	M/s
	90 ⁰ Bend Head Loss Factor, K	: 0.022	М
	90 ⁰ Bend Head Loss, $K * V_D^{2/2g}$: 0.500 : 0.011	
	Say	0.051	М
	Downstream Launder Top Water Level	46.700	M
	-aunder Invert Level	46.150	М
	Jpstream Launder Top Water Level	46.752	M
	Say :	46.750	М
Г		-0.750	M
	Design Peak Flow Rate, Q _P	0.573	2
		2062.500	M³/s
c	larifier Diameter, D	44.700	M³/Hr
v	larifier Peripheral Launder Length, $L_1 = \prod * D$	140.447	M
τ	Notch Weir Spacing, c/c	0.200	M
Sa	otal Nos. V Notches, N	702.237	M
	-	702.000	Nos.
	esign Flow Rate/ V Notch, $Q_1 = Q_P / N$	2.9380	Nos.
V	Notch Weir Equation, Q * 5320 = $H^{2.47}$	• • •	M³/Hr
	- Flow Rate/ V Notch, M³/Hour		
He	Head Over Weir, MM ad Over Weir, H		
Fre	e Fall across Weir (Provided)	49.884	MM
		100.000	MM
Sec	condary Clarifier Top Water Level	0.100	М
-	· · · · · · · · · · · · · · · · · · ·	46.850	М
· .	CONDARY CLARIFIER		
Sec	ondary Clarifier Top Water Level		
	poard :	46.850	М
Sec	ondary Clarifier Top of Structure Level	0.500	М
	Vindery Clarifier Side Water Dawy	47.350	М
Seco	ondary Clarifier Invert Level	3.000	М
		43.850	, M .
		Gontam Banerje	e, Fint-
		Depariment of Civil E Indian Institute of Tech Maragasi-201095	nginnering nology(D.H.M.) MALA
		<i>∦</i>	
Ello Cal	culation for STP Plant Hajipur		
	Page 4 of 11		

S.NO.	PARAMETER		VALUE	UNIT
	Design Peak Flow Rate, Q _P	:	0.573	M ³ /s
	Return Sludge Flow Rate, $Q_R = Q_A$:	0.255	M³/s
	Design Flow Rate, AT Outlet Chamber - Clarifier, $Q_D = Q_P + Q_A$:	0.828	M ³ /s
	Pipeline Diameter, AT Outlet Chamber - Clarifier, D		1.000	M
	Pipeline MOC, AT Outlet Chamber - Clarifier	:	DI K7	
	Pipeline Cross - Sectional Area, A = ⊓/4 *D*D	:	0.786	M ²
,	Pipeline Velocity, $V = (Q_P + Q_A) / A$:	1.054	M/s
	Pipeline Length (to Clarifier Central Column), L (Max)	:	35.000	M
	Hazen William Equation, V = 0.849*C*R ^{0.63} *S ^{0.54}			
	Co-Efficient of Roughness, C (CPHEEO Manual)	:	100.000	
	Hydraulic Radius, R = D/4	:	0.250	М
	Friction Slope, S	:	0.0015	M/M
	Pipeline Friction Loss, S * L	:	0.052	М
	Velocity Head, V ² / 2g	:	0.057	M
	Entrance Loss Co-Efficient	:	0.500	
	Exit Loss Co-Efficient	:	1.000	
	Total Entrance/ Exit Losses, 1.5 * V ² / 2g	:	0.085	М
	Total Pipeline Friction/ Entrance/ Exit Head Losses	:	0.137	М
	Central Column ID, D ₁	:	1.000	Μ
	Cross-Sectional Area, $A_1 = \pi/4^*D_1^*D_1$:	0.786	M ²
	Velocity (through Central Column), $V_1 = Q_D / A_1$:	1.054	M/s
	Hazen William Equation, $V = 0.849 \text{*} \text{C}^{*} \text{R}^{0.63} \text{*} \text{S}^{0.54}$			
	Co-Efficient of Roughness, C (CPHEEO Manual)	:	120.000	
	Hydraulic Radius, $R = D_1 / 4$:	0.250	М
	Friction Slope, S ₁	:	0.0011	M/M
	Height of Central Column, H	:	7.500	М
	Central Column Friction Loss, S ₁ * H	•	0.006	М
	No. Central Column Ports	:	4.000	Nos.
	Port Width, W	:	0.400	M
	Port Height, Z Port Cross Section Area, A ₂ = W * Z	:	1.000	M
	Velocity (through Ports), $V_2 = Q_p / A_2$:	1.600	M ²
	· · ·	:	0.517	M/s
	Orifice Equation, $V = 0.6 * (2gH)^{0.5}$		0.000	
	Head Loss (through Ports)	:	0.038	M
	Total Head Loss (AT Outlet Chamber - Clarifier)	ξ :	0.181	M
	Aeration Tank Outlet Chamber Top Water Level	:	47.030	M
	Say	:	47.050	М
	Secondary Clarifier Diameter	:	44.700	М
	Central Column Inner Diameter	:	1.000	Μ
	Central Column Wall Thickness (Considered)	:	0.150	М
	Central Column Outer Diameter	:	1.300	M h D
			nonecto	Maria Maria

.

NO.	PARAMETER		VALUE	UNIT
	Sludge Pit Width	:	1.000	М
	Sludge Pit Depth	:	1.000	М
	Clarifier Zone Bottom Floor Length	:	41.400	М
	Clarification Zone Bottom Floor Half Length	•	20.700	M
	Bottom Floor Slope (Horizontal : Vertical)	•	12.000	
	Slope Height (Minimum)		1.725	84
	Slope Height (Considered)	•	1.750	M
		·		М
	Sludge Pit Top Level	:	42.100	М
	Sludge Pit Bottom Level	:	41.100	М
	Minimum Vertical Clearance for RCC Duct (Considered)	:	1.500	М
	Central Column Invert Level (Minimum)	:	39.600	М
	Central Column Invert Level (Design)	:	39.600	М
.0	AERATION TANK OUTLET CHAMBER			
	Design Flow Rate, AT Outlet Chamber - Clarifier, $Q_D = Q_P + Q_A$	•	0.828	• •3
	Aeration Tank Outlet Chamber Top Water Level		47.050	M³/s
	Aeration Tank Outlet Chamber Top Water Level		39.600	M
	Aeration Tank Outlet Chamber Side Water Depth	•	7.451	M M
	Say	•	7.450	M
	Aeration Tank Diameter	:	47.400	M
	Aeration Tank Inlet/ Outlet Angular Stagger (Refer Layout)	:	225.000	Deg.
	Aeration Tank Peripheral Weir Travel Length (Max)	:	93.082	M
	Aeration Tank Peripheral Weir Launder Width Camp Equation (for Weir Launder Hydraulic Profile) $H_0 = (yc^2 + 2q^2/gy_c + fLq^2/12grd)^{0.5}$:	0.800	М
	H_0 - Upstream Water Depth			
	y _c - Minimum Downstream Water Depth i.e. Critical Depth (under Ideal Conditions)			
	q - (Flow Rate/ Half Launder) / Launder Width		0.517	M ³ /M/s
	g - Acceleration due to Gravity		9.810	M/s ²
	f - Darcy Weissbach Friction Factor (CPHEEO Manual)		0.020	11/5
	L - Weir Launder Length	:	93.082	М
	r - Mean Hydraulic Radius d - Mean Side Water Depth			
	Calculate Critical Depth $y_c = (q^2/g)^{(1/3)}$	•	0.301	
		•		М
	Considering Non-Ideal Conditions, $y_c = 0.7$ (Assumed)	:	0.700	М
	Calculate H ₀ (w/o Friction Loss), H ₀ = $(y_c^2 + 2q^2/gy_c) \wedge 0.5$;	0.754	М
	Estimate H ₀ (w/ Friction) = H ₀ (w/o Friction) + 0.16 * (H ₀ (w/o Friction) - y	(c) :	0.762	М
	Estimate d = (H ₀ (w/ Friction) + y _c) / 2	•	0.731	
	Estimate $r = (W \times d) / (W + 2 \times d)$		0.259	M
	Calculate $H_0 = (y_c^2 + 2q^2/gy_c + fLq^2/12grd)^{0.5}$		0.768	M
	Drop in Launder Water Level = $H_0 - y_c$	•		M
		:	0.068	M
	Say	:	0.100	PMD.
	Downstream Velocity, $V_D = Q_D / (W^*y_c)$)	1.478 Band pulani Band profe Ladipa Arctivise of C Ladipa Arctivise of C	asor asor (eff Englaserin) Technology(B.H 21035 FIDIA
		DATE (* 19 Stational (* 1997)		

Page 6 of 11

S.NC	D. PARAMETER		VALUE	
			TALVE	UNIT
	Downstream Velocity Head = $VD^2/2g$		0.111	
	Exit Head Loss Factor, K	:	1.000	М
	Exit Head Loss, K * $V_D^2/2g$:	0.111	14
	Say	:	0.114	М
	Downstream Launder Top Water Level Say	:	47.165	M M
	Launder Invert Level	:	47.200	M
	Upstream Launder Top Water Level	:	46.500	M
	Weir Launder Top of Structure Level	:	47.300	M
	Weir Launder Free Board	:	47.900	М
		•	0.600	М
	Design Flow Rate, AT Outlet Chamber - Clarifier, $Q_D = Q_P + Q_A$		0.828	2
	Aeration Tank Outlet Peripheral Weir Length, L		148.931	M ³ /s
	Rectangular Weir Equation, $Q_P = 2/3*C_e*(2g)^{0.5*L*H^{1.5}}$ (CPHEEO Manual)	·	140.301	М
	Ce = (0.602 + (0.075 * H / Z))			
	Head Over Rectangular Weir, H (by Calculation)	:	0.008	N <i>A</i>
	Free Fall Across Weir (Considered) Aeration Tank Top Water Level	:	0.100	M
	Outlet Weir Lip Level	:	47.400	M
		:	47.392	M
	Finished Ground Level	:	46.400	M
	Free Board	:	0.500	M
	Aeration Tank Outlet Chamber Top of Structure Level	:	47.900	M
10. 0	AERATION TANK	·		
	Aeration Tank Top Water Level		47.400	
	Aeration Tank Side Water Depth	•		М
	Aeration Tank Invert Level		5.000	М
	Free Board	:	42.400	М
	Aeration Tank Top of Structure Level	:	0.500	М
	Finished Ground Level	:	47.900	М
		:	46.400	М
	Design Flow Rate, AT Inlet Chamber - Aeration Tank, $Q_D = Q_P + Q_A$			
	Aeration Tank Inlet Annular Channel Width, W	÷	0.828	M³/s
	Aeration Tank Inlet Annular Channel Side Water Depth, Z	:	0.900	М
	Aeration Tank Inlet Annular Channel Velocity, $V = Q_D / (W^*Z)$:	0.800	М
	Aeration Tank Inlet Annular Channel Diameter, D	:	1.149	M/s
	Aeration Tank Inlet Annular Channel Diameter, D	:	8.000	М
	Aeration Tank Inlet Annular Channel Length, L	:	25.136	М
	Inlet Orifice Spacing, c/c, X	:	1.200	М
	No. Inlet Orifices, $N = L/X$:	20.000	Nos.
·	Inlet Orifice Diameter, D	:	0.250	M
	Inlet Orifice Cross Section Area, $A = N * (\Pi/4 * D * D)$:	0.982	
	Inlet Orifice Velocity, $V_1 = Q_D / A$:	0.843	M ²
	Orifice Equation, $V = 0.6 * (2gH)^{0.5}$		0.010	M/s
	Head Loss (through Orifices)		0.101	
	Aeration Tank Inlet Annular Channel Top Water Level	•	47 500	M M Sh D
		•	47.500 Gostam	Banenjæe, Ph.D

Goutam Baneryce, Ph.D. Professor Department of Civil Engineering adian Vincitute of Tachnology(B.H.U.) Faranasi 227005 CIDIA

JING

S.NO	PARAMETER			
			VALUE	UNIT
	Say		47.500	
	Aeration Tank Inlet Annular Channel Invert Level		46.700	M
	Aeration Tank Inlet Annular Channel Top of Structure Level	:	47.900	M
	Free Board	:	0.399	M
	Say	:	0.400	M
	Aeration Tank Inlet Channel Width, W			
•	Aeration Tank Inlet Channel Side Water Depth, Z	:	1.100	М
	Channel Velocity, $V = Q_p / (W * Z)$:	0.800	М
	Manning Equation, $V = 1/n * R^{0.667} * S^{0.5}$:	0.940	M/s
۰.	Co-Efficient of Roughness, n (CPHEEO Manual)		0.014	
	Cross-Sectional Area, A = W * Z	:	0.014	_
	Wetted Perimeter, $P = ((Z * 2) + W)$:	0.880	M ²
	Hydraulic Radius, $R = A / P$		2.700 0.326	М
	Friction Slope, S (By Calculation)	•	0.00077	M
	Channel Length (Max), L	•	28.000	M/M
	Friction Loss, $H_F = S * L$:	0.022	М
	Exit Head Loss Factor, K		1.000	Μ
	Velocity Head = $V^2 / 2g$		0.045	
	Exit Head Loss $H_L = K * V^2/2g$		0.045	M
	Total Head Loss in Channel, $H_L = H_F + H_K$:	0.067	M
	Aeration Tank Inlet Channel Top Water Level			141
	Say	:	47.567	М
	Aeration Tank Inlet Channel Invert Level	:	47.600	M
	Aeration Tank Inlet Channel Top of Structure Level	:	46.800	М
	Free Board	:	47.900 0.300	M M
1.0	PARSHALL FLUME CHANNEL			
	Design Flow Rate, Q _P		0.573	•
	Flow Equation $Q_A = 1.056 * h_1^{1.538}$ (Ref: ILRI USA)	·	0.375	M³/s
	Upstream Head h ₁		0.672	
	Modular Limit h ₂ /h ₁		0.700	М
	Downstream Head h ₂ (Max)	:	0.470	B .4
	Downstream Head h ₂ (Assumed)	:	0.421	M
	Head Loss, $H_L = h_1 - h_2$:	0.251	M .
	Say		0.300	M
	Width, W	•	0.800	M
	Throat Depth, N	:	0.229	M
	Side Water Depth (Downstream), D_2	:	0.650	
I	Downstream Velocity, $V_2 = Q_A / (W^*D_2)$:	1.102	M M/s
	Downstream Velocity Head, $V_2^2/2g$:	0.062	
6	45 ⁰ bend Head Loss Factor, K		1:000 m Baner)	ee, PMD.
	IUIN CONTRACTOR	<u>G</u>	Professo	
		70)	Depertien of the	Enclosy(B.II.U.)
	1 El	<u>151</u>	ndizo insider of ite Organization (2010)	ert a conversion
	Net L		ł	
	19.			

S.NC	D. PARAMETER		VALUE	UNIT
	45° bend Head Loss, H _L = K * V ² /2g		0.000	
	Exit Head Loss Factor, K	•	0.062 1.000	М
	Exit Head Loss, K * $V_2^2/2g$:	0.062	
	Parshall Flume Top Water Level (Downstream)	•	47.724	M
	Say		47.750	M
	Parshall Flume Invert Level		47.100	М
	Parshall Flume Top Water Level (Upstream)		48.050	М
	Free Board	•	0.300	М
	Parshall Flume Top of Structure Level		48.350	М
	Finished Ground Level	•	46.400	M
	Side Water Depth (Upstream), D ₁	•		M
	Upstream Velocity, $V_1 = Q_P / (W^*D_1)$		0.950	М
	Upstream Velocity Head = $V_1^2 / 2g$	•	0.754	M/s
	Entrance Head Loss Co-Efficient, K ₁		0.029	M/s
	Entrance Head Loss = $K_1 * V_1^2 / 2g$	•	0.500	
	Grit Chamber Outlet Channel Top Water Level	•	0.014	M
	Say		48.064	М
40.0			48.100	М
12.0	GRIT CHAMBERS			
	Peak Flow Rate, Q _P		0.570	,
	Grit Chamber SWD, Z		0.573	M³/s
	Grit Chamber Outlet Weir Length, L		0.900 5.900	M M
	Rectangular Weir Equation, $Q_P = 2/3*C_e*(2g)^{0.5*L*H^{1.5}}$ (CPHEEO Manual) Ce = (0.602 + (0.075 * H / P)) Head Over Rectangular Weir, H (by Calculation)		0.140	
	Free Fall Across Weir (Considered) including head over weir		0.142 0.200	M
	Grit Chamber Top Water Level Grit Chamber Invert Level		48.300	M M
	Free Board		47.400	M
	Grit Chamber Top of Structure Level		0.500	M
	Outlet Weir Lip Level	·	48.800	М
	Finished Ground Level		48.158 46.400	M M
3.0	MECHANICAL FINE SCREEN CHANNELS			
	Peak Flow Rate, Q _P		0 572	
	Grit Chamber Inlet Gate Width, W		0.573	M³/s
	Grit Chamber Inlet Gate SWD, Z		0.550	М
	Velocity (through Gate), $V = Q_P / (W^*Z)$		0.950	М
	Velocity Head = $V^2 / 2g$		1.096	M/s
	Sluice Gate Head Loss Factor, K		0.061	М
	Nos Sluice Gates N		0.800 1.000	
	Head Loss, Fine Screen Channel Outlet Chamber to Grit Chamber, $H_L = N$ * K * V ² /2g		1.000	
	· · · ·		0.049	М
	Fine Screen Channel Outlet Chamber TWL	F	48:349 Joulam Banerj	ee, Ph.M.
			Burain Professo repartment of Civil an Institute of Tec Varacabi-2210	Engline S.A.M.)
-lvd rali				

Page 9 of 11

3.NO.	PARAMETER	VALUE	UNIT
	Say	: 48.350	М
	Fine Screen Channel Outlet Chamber Invert Level	: 47.400	M
	Fine Screen Channel Outlet Chamber SWD	: 0.950	M
	Fine Screen Channel Outlet Gate Width, W	: 0.550	M
	Fine Screen Channel Outlet Gate SWD, Z	: 1.000	М
	Velocity (through Gate), $V = QP / (W^*Z)$: 1.042	M/s
	Velocity Head = $V^2 / 2g$: 0.055	М
	Sluice Gate Head Loss Factor, K	: 0.800	
	Nos. Sluice Gates, N Head Loss, Fine Screen Channel to Fine Screen Channel Outlet	: 1.000	
	Chamber, $H_L = N * K * V^2/2g$. 0.044	М
	Fine Screen Channel Top Water Level (Downstream)		
	Say	: 48.394	M
	Fine Screen Channel Side Water Depth	: 48.400	M
	Fine Screen Channel Invert Level	: 1.000 : 47.400	М
	Free Board (Downstream)	: 0.500	M
	Fine Screen Channel Top of Structure Level (d/s)	: 48,900	M M
		-	IVI
	Head Loss across Screen (49% Clogging, Refer Process Calculations)	: 0.300	M
	Fine Screen Channel Top Water Level (Upstream)	: 48.700	Μ
	Fine Screen Channel Top of Structure Level (u/s)	: 49.250	М
	Free Board (Upstream)	: 0.549	М
	Say	: 0.550	M
	Finished Ground Level	: 46.400	M
 4.0	STILLING CHAMBER		
	Peak Flow Rate, Qp	0.570	
		: 0.573	M³/s
	Fine Screen Channel Inlet Gate Width, W	: 0.400	М
	Fine Screen Channel Inlet Gate SWD, Z	: 1.300	М
	Velocity (through Gate), V = QP / (W*Z)	1.102	M/s
	Velocity Head = $V^2 / 2q$	0.062	M
	Sluice Gate Head Loss Factor, K	0.800	
	Nos. Sluice Gates, N	1.000	
		. 1.000	
	Head Loss, Stilling Chamber to Fine Screen Channel, $H_L = N * K * V^2/2g$	0.049	М
	Stilling Chamber Top Water Level	· 48.750	м
	Say	48.750	_
	-	•	M
	Finished Ground Level	: 46.400	М
	Raw Sewage Pumped Delivery Header Diameter, D	: 0.600	М
	Gap, Finished Ground Level - Pipeline Soffit Level	: 0.800	M
	Raw Sewage Pumped Delivery Header Soffit Level	: 45.600	М
	Raw Sewage Pumped Delivery Header Invert Level	45.000	Μ
	Gap, Pipeline Invert Level - Stilling Chamber Invert Level	0.200	М
	Stilling Chamber Invert Level	44.800	М
	Stilling Chamber Side Water Depth	3.950	М
	Free Board	0.500	М
	Stilling Chamber Top of Structure Level	49.250	ee, PMD.
		Goutam Banen Professo Department of Civi Indian Institute of Te- Varanssi-2216	(Engineering
Hude		• • •	

Page 10 of 11

S.NO.	PARAMETER		VALUE	UNIT
15.0	INLET BYPASS			
	Outfall Manhole Top Water Level (Considered)		46.200	·
	Peak Flow Rate, Q _P		0.573	M
	Bypass Sewer Pipeline Diameter, D		0.800	M³/s
	Bypass Sewer Pipeline MOC	•	RCC	М
	Finished Ground Level	•	46.400	• •
	Gap, FGL - Bypass Sewer Soffit Level	•	1.000	M
	Bypass Sewer Pipeline Soffit Level	•	45 400	M
	Bypass Sewer Pipeline Invert Level		44.600	M
	Bypass Sewer Pipeline Velocity, $V = Q_P / (\Pi^* D^* D/4)$		1.140	M
	Velocity Head = $V_1^2 / 2g$:	0.066	M/s
	Entrance Head Loss Co-Efficient, K ₁	:	0.500	М
	Exit Head Loss Co-Efficient , K ₂	:	1.000	
	Nos. Entrances/ Exits (Refer Layout) including one at near bound Entrance/ Exit Head Loss, $H_K = 4 * (K_1+K_2) * V^2 / 2g$	dary of plar :	5.000	
	Bypass Sewer Pipe Line Length (Max), L	:	0.496	М
	Hazen William Equation, V = $0.849 * C * R^{0.63} * S^{0.54}$:	130.000	М
	Hazen William Co-Efficient, C (CPHEEO Manual)	:	120.000	
	Hydraulic Radius, $R = D/4$:	0.200	М
1	Friction Slope, S(by Calculation) Friction Loss, H _F = S * L	:	0.00159	M/M
		:	0.207	M
	Total Head Loss, $H_L = H_F + H_K$:	0.703	M
S	Bypass Chamber Top Water Level (By Calculation) Say	:	46.903	М
(Gap, Bypass Sewer Pipeline IL - Bypass Chamber II	:	46.900	М
E	Bypass Chamber Invert Level	•	0.200 44.400	M
E	Bypass Chamber Side Water Depth Bypass Chamber Top of Structure Level	:	2.500	M M
	Free Board	:	49.250	M
3	Say	•	2.349 2.350	М
S	tilling Chamber Top Water Level	•	48.750	M
В	ypass Gate Width, W		0.550	M
	ypass Gate SWD, Z		0.550	M
	elocity (through Gate), V = Q _P / (W*Z)	:	1.894	M M/s
	elocity Head = V^2 / 2g	:	0.183	M
Si	luice Gate Head Loss Factor, K	:	0.800	111
H	ead Loss, Stilling Chamber to Bypass Chamber, $H_L = K * V^2/2g$	•	0.146	М
By	ypass Chamber Top Water Level (Maximum Allowable)	•	48.604	
Sa	ау	•	48.600	M M
By	/pass Manhole Top Water Level (Maximum)	:	46.900	M
By Fr	pass Manhole Top of Structure Level	:	47.300	M
Ву	pass Manhole Invert Level	:	0.400	М
By	pass Manhole Side Water Depth (Maximum)		44.400 2.500 () Re	M Ph.D.
ly c Iralic (Calculation for STP Plant Hajipur Page 11 of 11	HING CO. LTD	nurber Aver of	M Fh.D. Merich Fh.D. Messor Olvil Engineering of Technology(B.H.U.) 291,085 MDIA

Owner	: Bihar Urban Infrastructure Development Corporation Ltd. Patna						
Project : Sewerage Network and 22 MLD STP Plant For Hajipur Town							
Contractor	tor :Tri-Tech (Beijing) Company Ltd. Beijing (New Delhi)						
Doc. Name	Doc. Name : STP Plant Automation Philosophy						
Doc. No.	: TT/BEI/HJ/1051/STP/A04	REV. 00	DT. 30.11.2012				

(Refer Process & Instrumentation Diagram Drawing No. TT/BEI/HJ/1051/STP/A10).

GENERAL DESCRIPTION

Each Electrical Drive of the Sewage Treatment Plant can be controlled as follows:

- 1.0 Through Local Push Button START/ STOP Station installed locally near the drive when in LOCAL Mode.
- 2.0 Through the Motor Control Center (MCC).
- 3.0 Through PLC/ SCADA installed in the Control Room when MCC is in REMOTE Mode. In REMOTE MANUAL Mode the Electrical Drive can be operated manually through Soft Keys on the SCADA Screen. In REMOTE AUTO Mode the Electrical Drive will START/ STOP automatically through software already installed in the PLC.

Details of Plant Automation pertaining to specific units are as follows:

TERMINAL PUMPING STATION

MECHANICAL SCREEN CHANNEL

- 1.0 Inlet Gate will be manually operated.
- 2.0 Mechanical Coarse Screen/ Conveyor Belt will be Timer Operated. Timer setting will be 0-30 minutes for Cycle Time 30 minutes. Conveyor Belt will automatically stop after a Lag Period of 60 seconds following Mechanical Screen Stop.

RAW SEWAGE SUMP WET WELL

- 1.0 Raw Sewage Transfer Pumps will be operated through PLC SCADA linked to Ultrasonic Level Sensor. During rising Sump Level 1 No. Raw Sewage Transfer Pump will come in to operation at Low Level 1 of the Sump Wet Well. A second Pump will come in to operation at Low Level 2. A third Pump will come in to operation at High Level 1. A fourth Pump will come in to operation at High Level 2. The operating sequence of the Raw Sewage Transfer Pumps will be rotated weekly through PLC SCADA. During decreasing Sump Level the operating sequence will perfect. be reversed.
- 2.0 Individual Pump Delivery Electrically Actuated Butterfly Valves will automatically Civil Profession (Civil Profession (Civil Profession)) OPEN when at PUMP START and automatically CLOSE at PUMP STOP

TRI-TECH 鼎联 STP PLANT AUTOMATION PHILOSOPHY (

- 3.0 Pump(s) in operation will be tripped automatically through Level Switch Hard Wire Interlock at Low Low Level in the Sump Wet Well.
- 4.0 Alarm will sound in the Control Panel at Sump Wet Well High High Level and Low Low Level activated by Ultrasonic Level Sensor.
- 5.0 Alarm will sound in the Control Panel at Sump Wet Well High High Level and Low Low Level activated by Level Switch.

SEWAGE TREATMENT PLANT

MECHANICAL FINE SCREEN CHANNELS

- 1.0 Inlet/ Outlet Gates will be manually operated.
- 2.0 Mechanical Fine Screen will be operated through PLC/ SCADA linked to ultrasonic Differential Level Sensor. Mechanical Fine Screen in operation will automatically START when Head Loss across the Screen touches 300 MMWC and automatically STP when Head Loss across Screen falls to 50 MMWC. Conveyor Belt will stop automatically after a Lag Period of 60 seconds following Mechanical Screen Stop. The operating sequence of the Mechanical Fine Screens will be rotated weekly through PLC SCADA.
- 3.0 Alarm will sound in the Control Panel when Head Loss across Fine Screen touches 350 MM activated by Ultrasonic Level Sensor.

GRIT CHAMBERS

- 1.0 Inlet Gates will be manually operated.
- 2.0 Grit Chamber ON/OFF operation will be controlled through PLC/ SCADA.
- 3.0 Torque Switch will automatically trip Grit Chamber Central Drive at high torque load. Torque Alarm will sound in Control Panel.

AERATION TANK

- 1.0 Air Blowers ON/OFF operation will be controlled through PLC/ SCADA. The operating sequence of the Air Blowers will be rotated daily through PLC SCADA.
- 2.0 Air Blower Speed will be regulated through Air Blower Variable Frequency Drive controlled by PLC/ SCADA linked to dissolved oxygen level in Aeration Tank monitored through DO Sensor.

SECONDARY CLARIFIER

- 1.0 Secondary Clarifier ON/OFF operation will be controlled through PLC/ SCADA.
- 2.0 Torque Switch will automatically trip Secondary Clarifier at high torque load. Torque Alarm will sound in Control Panel.

FLUSHING PUMPS

Goutam Banerice, Ph.D. 1.0 Flushing Pump ON/OFF operation will be controlled through PLC/ SCADA. Trafesson 2.0 Level Switch will automatically trip Flushing Pump in operation at low level of the processon Chlorine Contact Tank Outlet Chamber. Low Level Alarm will sound in Control 1067 [PDIA Panel.

NG

Page 2

TRI-TECH 就联 STP PLANT AUTOMATION PHILOSOPHY

RETRUN SLUDGE SUMP

- 1.0 Return Sludge Pump ON/OFF operation will be controlled through PLC/ SCADA. The operating sequence of the Return Sludge Pumps will be rotated weekly through PLC SCADA.
- 2.0 Level Switch will automatically trip Return Sludge Pump in operation at low level in Return Sludge Sump. Low Level Alarm will sound in Control Panel.
- 3.0 Electrically Actuated Knife Gate Valves recycling sludge to Aeration Tank and wasting sludge to Gravity Sludge Thickener will automatically regulated through PLC/ SCADA.
- GRAVITY SLUDGE THICKENER
- 1.0 Gravity Sludge Thickener ON/OFF operation will be controlled through PLC/ SCADA.
- 2.0 Torque Switch will automatically trip Gravity Sludge Thickener at high torque load. Torque Alarm will sound in Control Panel.

CENTRIFUGE FEED PUMPS

- 1.0 Centrifuge Feed Pump ON/OFF operation will be controlled through PLC/ SCADA.
- 2.0 Pressure Switch will automatically trip Centrifuge Feed Pump/ Centrifuge/ Poly Dosing Pump in operation at high pressure in pump delivery line. Pressure Alarm will sound in Control Panel.

POLY DOSING TANKS/ PUMPS

- 1.0 Poly Tank Agitator/ Poly Dosing Pump ON/OFF operation will be controlled through PLC/ SCADA.
- 2.0 Level Switch will automatically trip Poly Dosing Pump in operation at low level in Poly Tank. Low Level Alarm will sound in Control Panel.

CHLORINATION SYSTEM

- 1.0 Chlorine Dosing Booster Pump ON/OFF operation will be controlled through PLC/ SCADA.
- 2.0 Chlorine Leak Detector will detect chlorine leak in Chlorination Building/ Chlorine Tonner Shed and sound alarm in Control Panel. Simultaneously Air Blower connected to Chlorine Tonner Hood will activate and pump chlorine contaminated air to Caustic Solution Tank.

Gouyam Banerjee, Ph.D. Professor on of Civil Engineering use of Techoology (B.H.U.) Devs dian ing nnsi-221695 INDIA

Page 3

PROJECT	22 MLD SEWAGE TREATMENT PLANT AT HAJIPUR TOWN, BIHAR	
CLIENT	BIHAR URBAN INFRASTRUCTURE DEVELOPMENT CORPORATION LTD (BUIDCO)	
CONTRACTOR	TRI-TECH (BEIJING) COMPANY LTD, BEIJING, NEW DELHI	
TITLE	ELECTRICAL LOAD LIST-STP	
DOCUMENT NO	TT/BEI/HJ/1051/STP/A05 REVISION-0 30/11/12	

щ,

	NO. OF DRIVES		EQUIPMENT	POWER SUPPLY	WODKING		
LOAD DESCRIPTION	TOTAL		STAND BY	RATING (KW)	FREQUENCY/ NO. OF PHASES	WORKING LOAD	LOAD
TOTAL KW	A	B	C.	D	E	F=BxD	G=AxD
COLLECTION SUMP						618,70 185,95	858.55 233.95
MECHANICAL COARSE SCREENS MOTOR	1	1	0	3.7		3.7	3.70
CONVEYOR	1	1	0	1.5	415V ± 10%	1.5	1.50
RAW SEWAGE WET WELL PUMP	5	4	1	45	50 Hz ± 5% 3 PHASE	180	225.00
MOTORISED VALVE AT DISCHARGE OF RAW SEWAGE	5	1	4	0.75		0.75	3.75
WET WELL PUMP							5.75
GRIT REMOVAL EQUIPMENT		***				11.90	14.10
MECHANICAL FINE SCREENS MOTOR	2	1	1	2.2		2.2	4,40
CONVEYOR	1	1	0	1.5		1.5	1.50
	2						
GRIT SCRAPPER		2	0	1.5	3 PHASE	3 .	3.00
GRIT CLASSIFIER	2	2	0	1.5		3	3.00
ORGANIC RETURN PUMP	2	2	0	1.1		2.2	2.20
SECONDARY TREATMENT							
BIOLOGICAL TREATMENT						264.00	396.00
AERATION AIR BLOWER	3	2	1	132	415V ± 10% 50 Hz ± 5% 3 PHASE	264	396.00
CLARIFICATION						39.75	58.80
SECONDARY CLARIFIER SCRAPPER	1	1	0	2.2	415V ± 10% 50 Hz ± 5%	2.2	2.20
RETURN ACTIVATED SLUDGE PUMP	3	2	1	18.5		37	55.50
MOTORISED VALVE AT DISCHARGE OF RAS & WAS	2	, 1	1	0.55	3 PHASE	0.55	1.10
CHLORINATION						18.90	27.80
CCT FLUSHING & RECIRCULATION PUMP	2	1	1	1.5		1.5	3.00
CHLORINE BOOSTER PUMP	2	1	1	1,5	ŕ	1.5	3.00
LEAK ABSORPTION BLOWER	2	1	1	2,2	415V ± 10%	2.2	4.40
LEAK ABSORPTION CAUSTIC SODA PUMP	2	1	1	3.7	50 Hz ± 5% 3 PHASE	3.7	7.40
POWER SUPPLY FOR CHLORINATOR SYSTEM	1	1	0	5	-	5	5.00
POWER SUPPLY FOR LEAK ABSORPTION SYSTEM	1	1	0	5	· · · · · · · · · · · · · · · · · · ·	5	5.00
SLUDGE TREATMENT							
LUDGE HANDLING						25.40	47.10
SLUDGE THICKENER SCRAPPER	1	1	0	3.7		3.7	3.70
CEN TRIFUGE FEED PUMP	2	1	1	3.7	415V ± 10% 50 Hz ± 5%	3.7	7.40
CEN TRIFUGE	2	1		18	3 PHASE	18	36.00
	121 14						
CHEMICAL DOSING						3.00	6.00
OLY DOSING TANK MIXER	Kag	CO	1	1.5	415V ± 10% 50 Hz ± 5%	1.5	3.00
POLY DOSING PUMP	3	<u> YEII</u>		outen Dat	3 PHASE	1.5	3.00
	ACT B	-TH- Page 1 of 2	Indih	Profe perissent of C n Institute of . Vacansi-20	vil Engineering Federalszv(B.H.U.)		

PROJECT CLIENT CONTRACTOR TITLE DOCUMENT NO	BIHAR TRI-TEC ELECTI	URBAN INFR	ASTRUCT COMPAN LIST-STP	IURE DEVELC	IAJIPUR TOWN, BII DPMENT CORPORA NG, NEW DELHI	TION LTD (BI	JIDCO))/11/12
LOAD DESCRIPTION	I TOTAL	NO. OF DRIV WORKING	STAND	EQUIPMENT RATING (KW)	POWER SUPPLY/ FREQUENCY/ NO. OF PHASES	WORKING LOAD	CONNECT LOAD
	A .	в	BY	(/(W))	E	F=BxD	GBAXD
NON-PROCESS LOAD						69.80	74.80
INSTRUMENTATION/PLC/SCADA SYSTEM	1	1	0	10		10	10.00
LABORATORY	1	1	0	10		10	10.00
INTERNAL BUILDING LIGHTING	1	1	0	10		10	10.00

0

5

5

5.00

						· ·	5.00
EXTERNAL LIGHTING	1	1	0	5	415V ± 10%	5	5.00
VENTILATION & AC SYSTEM	1	1	0	10	50 Hz ± 5%	10	10.00
BOREWELL PUMP	1	1	0	3.7	3 PHASE	3.7	3.70
DEWATERING PUMP	1	1	0	1.1		1.1	1.10
UPS & BATTERY CHARGER	2	2	0	5		10	10.00
WELDING RECAPTACLES	2	1	1	5	7	5	10.00
				• • • •			• • • • • • • • • • • • • • • • • • • •

: KW RATING OF THE EQUIPMENT IS TENTATIVE. FINAL LOAD LIST WILL BE PROVIDED DURING DETAIL ENGINEERING.

STREET LIGHTING

JING

Goutain Banerice, Ph.D. Professor Departmen: of Civil Sugineering Indian Institute of Technology(R.H.U.) Varance-221605 15101A

)wner	: Bihar Urban Infrastructure Development Corporation Ltd. Patna					
'roject	: Sewerage Network and 22 MLD STP Plant For Hajipur Town					
;ontractor	: Tri-Tech (Beijing) Company Ltd. Beijing (New Delhi)					
	oc. Name : Pumping Head Calculations for Return Sludge Pumps					
oc. No.	: TT/BEI/HJ/1051/STP/A06	REV. 00	DT. 30.11.2012			

S.NO.	PARAMETER		VALUE	UNIT
1.0	DESIGN FLOWRATE			
	Individual Pump Flow Rate, Q ₁	:	475.000	M ³ /Hr
	Nos. Return Sludge Pumps, N Nos. Return Sludge Pumps (Working), N ₁	: : :	0.132 3.000 2.000	M ³ /s
	Total Return Sludge Pumped Flow Rate, $Q = N_1 * Q_1$:	950.000	M ³ /Hr
	Gravity Thickener Sludge Header Flow Rate, Q_2	: : :	0.264 33.000 0.009	M ³ /s M ³ /Hr M ³ /s

2.0 STATIC HEAD CALCULATION (RETURN SLUDGE SUMP - AERATION TANK)

Refer Layout Plan Drawing No. TT/BEI/HJ/1051/STP/A05 Rev. 01

Total Return Sludge Pumped Flow Rate, $Q = N_1 * Q_1$:	0.264	M ³ /s
Pipeline Diameter	:	0.600	М
Pipeline MOC	•	DI K7	101
Pipeline Cross - Sectional Area, А = п/4 *D*D	:	0.283	M ²
Pipeline Velocity, $V = Q_P / A$:	0.933	M/s
Pipeline Length, Clarifier Sludge Pit - Return Sludge			10// 5
Sump, L (Max)	:	30.000	М
Hazen William Equation, $V = 0.849 \text{*}C \text{*}R^{0.63} \text{*}S^{0.54}$			
Co-Efficient of Roughness, C (CPHEEO Manual)	:	100.000	
Hydraulic Radius, R = D/4	:	0,150 Banerie	e, ^{ph.D.} M
Friction Slope, S		0.00216 ¹ rdf: 350	Tonnineer TUE/NA
Pipeline Friction Loss, S * L	• • • • • £	0.00216 rdf-3601 Department of Civil Lindi 0.065 rule di Auci	10010K9(B.H.O.)
	GOS	India 0.065 mt 12190	STUDIE IVI
$\int_{U_{1}} \int_{U_{2}} \int_{U$			

PUMPING HEAD CALCULATION FOR RETURN SLUDGE PUMPS

S.NO.	PARAMETER		VALUE	UNIT
	Velocity Head, V ² / 2g	:	0.044	
	Entrance Loss Co-Efficient, K ₁	:	0.500	М
	Exit Loss Co-Efficient, K ₂	•	1.000	
•	Knife Edge Gate Valve Loss Co-efficient, K ₃	:	1.000	
	Entrance/Exit/Valve Loss Co-Efficient $K = K_1 + K_2 + K_3$:	2.500	
	Entrance/Exit/Valve Head Loss = $K * V^2/2g$:	0.111	М
	Total Friction/ Fittings Head Loss	:	0.176	M
	Say	:	0.200	M
	Secondary Clarifier Top Water Level	:	46.850	M
	Return Sludge Sump Top Water Level	:	46.650	M
	Aeration Tank Inlet Channel Top Water Level	:	47.600	M
	Gap, Pump Delivery Pipeline to Inlet Channel TWL	:	0.100	M
	Pump Delivery Pipeline Bottom Discharge Level	•	47.700	· M
	Static Head	:	1.050	M

STATIC HEAD CALCULATION (RETURN SLUDGE SUMP - GRAVITY SLUDGE 3.0 THICKENER)

Refer Layout Plan Drawing No. TT/BEI/HJ/1051/STP/A05 Rev. 01

Return Sludge Sump Top Water Level	:	46.650	М
Gravity Sludge Thickener Top Water Level	•	49.900	
Gap, Pump Delivery Pipeline to Inlet Chamber TWL	•		Μ
	:	0.100	Μ
0	:	50.000	М
Static Head	:	3.350	М

4.0 INDIVIDUAL PUMP DELIVERY PIPE FRICTION LOSS

Pump Flow Rate, Q ₁	:	0.132	M ³ /s
Pump Delivery Pipeline Diameter, D	:	0.300	М
Pump Delivery Pipeline Length (Max), L	:	8.000	M
Pump Delivery Pipeline MOC	:	DI K7	141
Pipe Velocity, $V = Q_P / (3.142*D*D/4)$:	1.866	M/s
Hazen William Equation, $V = 0.849 * C * R^{0.63} * S$	0.54		
Hazen William Co-Efficient, C (CPHEEO Mange		G100.000 anerjee	. Ph.D.
Hydraulic Radius, R = D/4	<u>()</u>	0.075 Department of freil Pri	
	J	3. Blog Low inter of feet th	ology(H.H.U.)
	1.1	Neranasi-121005	[14 0.125

PUMPING HEAD CALCULATION FOR RETURN SLUDGE PUMPS

S.NO	PARAMETER		VALUE	UNIT
	Friction Slope, S(by Calculation) Pipe Friction Loss, H _F = S * L	:	0.01747 0.140	M/M M
5.0	AERATION TANK COMBINED DELIVERY HEAD	DER FI	RICTION LOSS	IVI
	Pump Delivery Pipeline Diameter, D	:	0.264	M³/s
	Pump Delivery Pipeline Length (Max), L	•	0.450	М
	Pump Delivery Pipeline MOC	•	60.000	М
	Pipe Velocity, $V = Q_P / (3.142*D*D/4)$:	DI K7	
	Hazen William Equation, $V = 0.849 * C * R^{0.63} * S^{0.63}$	54	1.659	M/s
	Hazen William Co-Efficient, C (CPHEEO Manual)	:	100.000	
	Hydraulic Radius, $R = D/4$:	0.113	М
	Friction Slope, S(by Calculation) Pipe Friction Loss, H _F = S * L	:	0.00875	M/M
		:	0.525	М
6.0	THICKENER SLUDGE WASTING HEADER FRIC	TION L	.OSS	
	Pump Flow Rate, Q ₂	:	0.009	M³/s
	Pump Delivery Pipeline Diameter, D	:	0.100	
	Pump Delivery Pipeline Length (Max), L	:	30.000	M M
	Pump Delivery Pipeline MOC		DI K7	IVI
	Pipe Velocity, $V = Q_{p} / (3.142*D*D/4)$		1.167	M/s
	Hazen William Equation, $V = 0.849 * C * R^{0.63} * S^{0.54}$	Ļ		
	Hazen William Co-Efficient, C (CPHEEO Manual)	:	100.000	-
	Hydraulic Radius, $R = D/4$		0.025	М
	Friction Slope, S (by Calculation)	:	0.02638	M/M
	Pipe Friction Loss, $H_F = S * L$:	0.791	M

7.0 FITTINGS LOSSES - PUMP SUCTION

Pump Flow Rate, Q ₁	•	0.132	M ³ /s
Pump Suction Pipeline Diameter, D	:	0.250	M
Suction Velocity V = $Q/(3.142/4*D*D)$		2.68801 tam 1	Banerjee, M/s D.
Velocity Head = V ² /2g	JING CO	U.Sogarhant	Professor of Civil EngiMering
			e of Technology(B.H.U.) i-221095 INDIA
	15-181 ×		

²U MPING HEAD CALCULATION FOR RETURN SLUDGE PUMPS

S.NO.	PARAMETER Entrance Loss Co-Efficient, K Pump Suction Fittings Losses = K * V ² /2g	:	VALUE 0.500 0.184	UNIT M
8.0	FITTINGS LOSSES - INDIVIDUAL PUMP DELIN	/ERY		
	Pump Flow Rate, Q ₁ Pump Delivery Pipeline Diameter, D Delivery Velocity V = Q/($3.142/4*D*D$) Velocity Head = V ² /2g Loss Co-Efficient, Reducer 300 NB - 250 NB, K ₁ Loss Co-Efficient, 90 ^o Bends, K ₂ Nos. 90 ^o Bends, N Loss Co-Efficient Non Return Valve, K ₃ Loss Co-Efficient Knife Edge Gate Valve, K ₄ Total Loss Co-Efficient K = (K ₁ +N*K ₂ +K ₃ +K ₄)		0.132 0.300 1.866 0.178 1.000 1.000 2.000 2.500 1.000 6.500	M ³ /s M M/s M
	Pump Delivery Fittings Losses = $K * V^2/2g$:	1.154	М

9.0 FITTINGS LOSSES - COMBINED PUMP DELIVERY HEADER

: 0.264 M ³ /s
ter D 0 450
/4*D*D) 4.050
0.140
Tota Mahar 14
: 1 000
$+N^*K_2+K_3+K_4+K_5)$: 11.000
= K * V ² /2g : 1.543 M
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

10.0 FITTINGS LOSSES - THICKENER SLUDGE WASTING HEADER

Pumped Flow Rate, Q_2 Pump Delivery Pipeline Diameter, D Delivery Velocity V = Q/(3.142/4*D*D) M_{12} M_{12} M_{1

PUMPING HEAD CALCULATION FOR RETURN SLUDGE PUMPS

Page 4 of 5

S.NO.	PARAMETER		VALUE	UNIT
	Velocity Head = $V^2/2g$	4 •	0.069	М
	Loss Co-Efficient, Reducer 450 NB - 100 NB, K ₁	:	1.000	
	Loss Co-Efficient, 90 [°] / 45 [°] Bends, K_2	•	1.000	
	Nos. 90 ⁰ / 45 ⁰ Bends, N		8.000	
	Loss Co-Efficient Knife Edge Gate Valve, K ₄		1.000	
	Exit Loss Co-Efficient, K_5	:	1.000	
	Total Loss Co-Efficient K = $(K_1+N^*K_2+K_3+K_4+K_5)$:	11.000	
	Pump Delivery Fittings Losses = K * V ² /2g	:	0.764	М

11.0 TOTAL HEAD LOSS (RETURN SLUDGE SUMP - AERATION TANK)

Total Head Loss = Static Head + Individual Pump			
Pipeline Friction Loss + Combined Delivery Header			
Friction Loss + Suction Fittings Loss + Individual			
Delivery Header Fittings Loss + Combined Delivery			
Header Fittings Loss)	:	4.596	M
Pump Delivery Head (Required)	:	4.600	М
Pump Delivery Head (Provided)	:	7.500	М

12.0 TOTAL HEAD LOSS (RETURN SLUDGE SUMP - GRAVITY THICKENER)

Total Head Loss = Static Head + Individual Pump Pipeline Friction Loss + Sludge Wasting Header Friction Loss + Suction Fittings Loss + Individual Delivery Header Fittings Loss + Sludge Wasting			
Header Fittings Loss)	:	6.382	М
Pump Delivery Head (Required)	:	6.400	M
Pump Delivery Head (Provided)	:	7.500	М
		•	

Power Rating

18.500

KW

ì

Department of Civil Engineering Indian Institute of Technology (E.H.U.) Maraasi-222005 INDIA

PUMPING HEAD CALCULATION FOR RETURN SLUDGE PUMPS

)wner [•] roject	: Bihar Urban Infrastructure D : Sewerage Network and 22 M						
ontra				IOWI			
oc. Na							
oc. No		REV. 00	DT. 30.11.2012				
S.NO.	PARAMETER		VALUE	UNIT			
1.0	DESIGN FLOWRATE						
	Pump Flow Rate, Q	:	15.000	M³/Hr			
		:	0.0042	M ³ /s			
2.0	STATIC HEAD CALCULATION						
	Gravity Sludge Thickener Top Water Level	:	49.900	М			
	Centrifuge Floor Level	:	51.300	M			
	Height, Floor Level - Centrifuge Centre Line	:	1.000	M			
	Centrifuge Centre Line Level	:	52.300	M			
	Static Head	:	2.400	М			
3.0	PUMP SUCTION/ DELIVERY PIPE FRICTI	ON LOSS					
	Pump Flow Rate, Q	:	0.0042	M ³ /s			
	Pump Suction/ Delivery Pipeline Diameter, D	:	0.100	M			
	Pump Delivery Pipeline Length (Max), L	:	40.000	M			
	Pump Delivery Pipeline MOC	:	DI K7				
	Pipe Velocity, $V = Q_p / (\prod^* D^* D/4)$ Hazen William Equation $V = 0.040 \pm 0.000$:	0.530	M/s			
	Hazen William Equation, $V = 0.849 * C * R^{0.63} * S$	-					
	Hazen William Co-Efficient, C (CPHEEO Manua	l) :	100.000				
	Hydraulic Radius, $R = D/4$:	0.025	М			
	Friction Slope, S (by Calculation) Pipe Friction Loss, H _F = S * L	:	0.00612 0.245	M/M			

4.0 FITTINGS LOSSES - PUMP SUCTION

S.NO.	PARAMETER		VALUE	LINUT
	Pump Flow Rate, Q	ъ		UNIT
	Pump Suction Pipeline Diameter, D	•	0.0042	M³/s
	Suction Velocity V = $Q/(T/4*D*D)$	•	0.100	M
•		:	0.530	M/s
	Velocity Head = $V^2/2g$	•	0.014	М
	Entrance Loss Co-Efficient, K ₁	•	0.500	
	45^{0} / 90 ⁰ Bend Loss Co-Efficient, K ₂	:	1.000	
	Nos. 45 ⁰ / 90 ⁰ Bends, N			
	Knife Edge Gate Valve Loss Co-Efficient, K ₃	•	6.000	
		•	1.000	
	100 NB x 65 NB Reducer Loss Co-Efficient, K_4	•	1.000	
	Total Head Loss Co-Efficient, $K = K_1 + N^*K_2 + K_3 + K_4$	÷	8.500	
	Pump Suction Fittings Losses = $K * V^2/2g$	-	-	
	· · · · · · · · · · · · · · · · · · ·	:	0.122	М

5.0 FITTINGS LOSSES - PUMP DELIVERY

Pump Flow Rate, Q		0.0042	• •3 •
Pump Delivery Pipeline Diameter, D			M³/s
Delivery Velocity V = $Q/(\Pi/4*D*D)$:	0.100	M
	:	0.530	M/s
Velocity Head = $V^2/2g$:	0.014	M
Loss Co-Efficient, Reducer 100 NB - 65 NB, K ₁	:	1.000	171
Loss Co-Efficient, 90 ⁰ Bends, K_2		1.000	
Nos. 90 ⁰ Bends, N	•	1.000	
	:	6.000	
Loss Co-Efficient Knife Edge Gate Valve, K ₃	:	1.000	
Nos. Knife Edge Gate Valves, N ₁	:	2.000	
Exit Loss Co-Efficient, K ₄			
Total Loss Co-Efficient K = $(K_1 + N^*K_2 + N_1^*K_3 + K_4)$	•	1.000	
	:	10.000	
Pump Delivery Fittings Losses = K * V ² /2g	:	0.143	М

6.0 TOTAL HEAD LOSS

9

Total Head Loss = Static Head + Friction Loss + Su	ction		-
Fittings Loss + Delivery Fittings Loss	:	2.910	М
Pump Delivery Head (Required)	:	3.000	M
Pump Delivery Head (Provided)	:	6.000	M
	S CS LTD In	Goutam Banerjee, I Professor Department of Civil Engi dian Institute of Technolo Warendet 221005 IN	Ph.D. necring gy(B.H. U.)

PUMP ING HEAD CALCULATION FOR CENTRIFUGE FEED PUMP

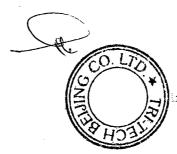
3

Owner Project Contractor Doc. Name Doc. No.

: Bihar Urban Infrastructure Development Corporation Ltd. Patna : Sewerage Network and 16 MLD STP Plant For Hajipur Town

: Tri-Tech (Beijing) Company Ltd. Beijing (New Delhi)

: Broad Specifications of Mechanical Equipment : TT/BEI/HJ/1051/STP/A12


REV. 00

DT. 30.11.2012

Sr. No		Uni	it Qty.	Locatio
1.0	SLUICE GATES			
i	Flange Back Frame Wall Thimble Mounted Sluice Gate, Specification IS: 13349, Flush Bottom Closure, Upward Opening Rising Spindle Type, Size 400 MM x 400 MM, Design Seating Head 1 M (Max), Design Unseating Head Not Applicable, C/L - P/L Distance 7.9 M, MOC Wall Thimble Frame & Slide/ Lifting Mechanism/ Pedestal Gear House Cover/ Stem Guide Cast Iron IS: 210 Grade FG 200, MOC Seating Faces/ Stem & Stem Extension/ Stem Coupling/ Fasteners/ Anchor Bolts SS ASTM A276 Type 316, Wedge/ Stem Nut SS ASTM A743 CF8M/ MOC Lift Nut Bronze	/		
ii	ASTM B148/ Manual Operation/ Balance Specifications as per Tender Documents. Flange Back Frame Wall Thimble Mounted Sluice Gate, Specification IS: 13349, Flush Bottom Closure, Upward Opening Rising Spindle Type, Size 650 MM x 650 MM, Design Seating Head 1. M (Max), Design Unseating Head Not Applicable, C/L - P/L Distance 9.0 M, MOC Wall Thimble/ Frame & Slide/ Lifting Mechanism/ Pedestal Gear House Cover/ Stem Guide Cast Iron IS: 210 Grade FG 200, MOC Seating Faces/ Stem & Stem Extension/ Stem Coupling/ Fasteners/ Anchor Bolts SS ASTM A276 Type 316, Wedge/ Stem Nut SS ASTM A743 CF8M/ MOC Lift Nut Bronze ASTM B148/ Manual Operation/ Balance Specifications as per Tender Documents.	<u>Nos.</u>	2	IPS1 IPS2
iii	Flange Back Frame Wall Thimble Mounted Sluice Gate, Specification IS: 13349, Flush Bottom Closure, Upward Opening Rising Spindle Type, Size 800 MM x 800 MM, Design Seating Head 1.5 M (Max), Design Unseating Head Not Applicable, C/L - P/L Distance 8.75 M, MOC Wall Thimble/ Frame & Slide/ Lifting Mechanism/ Pedestal Gear House Cover/ Stem Guide Cast Iron IS: 210 Grade FG 200, MOC Seating Faces/ Stem & Stem Extension/ Stem Coupling/ Fasteners/ Anchor Bolts SS ASTM A276 Type 316, Wedge/ Stem Nut SS ASTM A743 CF8M/ MOC Lift Nut Bronze ASTM B148/ Manual Operation/ Balance Specifications as per Tender Documents.		2	IPS3
V ľ F	Flange Back Frame Wall Thimble Mounted Sluice Gate, Specification IS: 13349, Flush Bottom Closure, Upward Opening Rising Spindle Type, Size 450 MM x 450 MM, Design Seating Head 1.5 M (Max), Design Unseating Head Not Applicable, C/L - P/L Distance 8.6 M, MOC Wall Thimble/ Frame & Slide/ Lifting Mechanism/ Pedestal Gear House Cover/ Stem Guide Cast Iron IS: 210 Grade FG 200, MOC Seating Faces/ Stem & Stem Extension/ Stem Coupling/ Fasteners/ Anchor Bolts SS ASTM A276 Type 316, Wedge/ Stem Nut SS ASTM A743 CF8M/ MOC Lift Nut Bronze ASTM B148/ Manual Operation/ Balance Specifications as per Tender Documents.	Nos.	2	IPS4
F C M T IS A	 Flange Back Frame Wall Thimble Mounted Sluice Gate, Specification IS: 13349, Flush Bottom Closure, Upward Opening Rising Spindle Type, Size 900 MM x 900 MM, Design Seating Head 1.5 A (Max), Design Unseating Head Not Applicable, C/L - P/L Distance 8.1 M (HOLD), MOC Wall himble/ Frame & Slide/ Lifting Mechanism/ Pedestal Gear House Cover/ Stem Guide Cast Iron S: 210 Grade FG 200, MOC Seating Faces/ Stem & Stem Extension/ Stem Coupling/ Fasteners SS STM A276 Type 316, Wedge/ Stem Nut SS ASTM A743 CF8M/ MOC Lift Nut Bronze ASTM 148/ Manual Operation/ Balance Specifications as per Tender Documents 			
FI Cl M Tł IS Ar	ange Back Frame Wall Thimble Mounted Sluice Gate, Specification IS: 13349, Flush Bottom losure, Upward Opening Rising Spindle Type, Size 550 MM x 550 MM, Design Seating Head 1.5 (Max), Design Unseating Head Not Applicable, C/L - P/L Distance 2.8 M (Approx.), MOC Wall himble/ Frame & Slide/ Lifting Mechanism/ Pedestal Gear House Cover/ Stem Guide Cast Iron : 210 Grade FG 200, MOC Seating Faces/ Stem & Stem Extension/ Stem Coupling/ Fasteners/ head Botts SS ASTM A276 Type 316, Wedge/ Stem Nut SS ASTM A743 CF8M/-MOC Lift Nut onze ASTM B148/ Manual Operation/Balagre Specifications as non Table 100 de	Nos.	1	TPS STP PASS

Department of Cirgineering វីង៨ BROAD SPECIFICATION OF MECHANICAL EQUIPMENT 1.00 名類君の

iv	Open Channel Side Wall Mounted Sluice Gate, Flush Bottom Closure, Upward Opening Rising Spindle Type, Width 400 MM x Height 1600 MM, Design Seating Head 1.5 M (Max), Design Unseating Head Not Applicable, MOC Frame & Slide/ Lifting Mechanism/ Pedestal Gear House Cover/ Stem Guide Cast Iron IS: 210 Grade FG 200, MOC Seating Faces/ Stem & Stem Extension/ Stem Coupling/ Fasteners/ Anchor Bolts SS ASTM A276 Type 316, Wedge/ Stem Nut SS ASTM A743 CF8M/ MOC Lift Nut Bronze ASTM B148/ Manual Operation.	Nos.	2	STP FINI SCREEN INLET
v	Open Channel Side Wall Mounted Sluice Gate, Flush Bottom Closure, Upward Opening Rising Spindle Type, Width 550 MM x Height 1300 MM, Design Seating Head 1.5 M (Max), Design Unseating Head Not Applicable, MOC Frame & Slide/ Lifting Mechanism/ Pedestal Gear House Cover/ Stem Guide Cast Iron IS: 210 Grade FG 200, MOC Seating Faces/ Stem & Stem Extension/ Stem Coupling/ Fasteners/ Anchor Bolts SS ASTM A276 Type 316, Wedge/ Stem Nut SS ASTM A743 CF8M/ MOC Lift Nut Bronze ASTM B148/ Manual Operation.		2	STP FINE SCREEN OUTLET
vi	Open Channel Side Wall Mounted Sluice Gate, Flush Bottom Closure, Upward Opening Rising Spindle Type, Width 550 MM x Height 1250 MM, Design Seating Head 1.5 M (Max), Design Unseating Head Not Applicable, MOC Frame & Slide/ Lifting Mechanism/ Pedestal Gear House Cover/ Stem Guide Cast Iron IS: 210 Grade FG 200, MOC Seating Faces/ Stem & Stem Extension/ Stem Coupling/ Fasteners/ Anchor Bolts SS ASTM A276 Type 316, Wedge/ Stem Nut SS ASTM A743 CF8M/ MOC Lift Nut Bronze ASTM B148/ Manual Operation.	Nos.	2	STP GRIT INLET
2.0	MECHANICAL COARSE BAR SCREENS			1
2.0	THE VALUE OF THE DAY SUREINS			
2.0	COALD COARDE DAN SUREENS			
i	(TENTATIVE) Mechanical Coarse Bar Screen, MOC SS304, Width 0.3 M, Angle of Inclination 80 ⁰ , Height 10.7 M (Minimum), Bar Size 8 MM x 40 MM, Nos. Bars 8, Clear Spacing 25 MM, Nos. Clear Spacings 7, Maximum Velocity through Screen 1.2 M/s, to suit underground Mechanical Coarse Bar Screen Channel having Peak Flow Rate 0.150 M ³ /s, Dimensions Length 5.0 M, Width 0.6 M (including 0.3 M Width for Screen Drive Mechanism), Side Water Depth (Upstream, Max) 0.7 M, Side Water Depth (Downstream) 0.45 M, Upstream Free Board (to Top of Wet Well) 8.6 M, Head Loss across Screen 0.15 M (Max), Height of Conveyor Belt above Channel Top of Strucure Level 0.6 M (approx.), Height of Screen Top above Conveyor Belt 0.5 M (approx.), complete with Control Panel, Electric Motor, Drive Arrangement, Mechanical Travelling Rakes and all Accesories. Note 1: The underground Mechanical Coarse Bar Screen Channel will be constructed at Invert Level RL 40.1 M (w.r.t. Finished Ground Level 48.40 M) on RCC Platform on top of a Wet Well having Dimensions 10.0 M Diameter x 1.0 M SWD with Top Water Level RL 39.80 M such that Invert Level of Screen Channel is 0.3 M above Wet Well Top of Structure Level and discharged to a Hand Cart positioned at Ground Level outside the Wet Well. Note 3. Screen operation will be Timer Controlled.			
	(TENTATIVE) Mechanical Coarse Bar Screen, MOC SS304, Width 0.3 M, Angle of Inclination 80 ⁰ , Height 10.7 M (Minimum), Bar Size 8 MM x 40 MM, Nos. Bars 8, Clear Spacing 25 MM, Nos. Clear Spacings 7, Maximum Velocity through Screen 1.2 M/s, to suit underground Mechanical Coarse Bar Screen Channel having Peak Flow Rate 0.150 M ³ /s, Dimensions Length 5.0 M, Width 0.6 M (including 0.3 M Width for Screen Drive Mechanism), Side Water Depth (Upstream, Max) 0.7 M, Side Water Depth (Downstream) 0.45 M, Upstream Free Board (to Top of Wet Well) 8.6 M, Head Loss across Screen 0.15 M (Max), Height of Conveyor Belt above Channel Top of Strucure Level 0.6 M (approx.), Height of Screen Top above Conveyor Belt 0.5 M (approx.), complete with Control Panel, Electric Motor, Drive Arrangement, Mechanical Travelling Rakes and all Accesories. Note 1: The underground Mechanical Coarse Bar Screen Channel will be constructed at Invert Level RL 40.1 M (w.r.t. Finished Ground Level 48.40 M) on RCC Platform on top of a Wet Well having Dimensions 10.0 M Diameter x 1.0 M SWD with Top Water Level RL 39.80 M such that Invert Level of Screen Channel is 0.3 M above Wet Well Top of Structure Level and discharged to a Hand Cart positioned at Ground Level outside the Wet Well	Set	1	IPS1

Goatam Banerjee, Ph.D. Frofesson Oorartong at of Civil Engineering IndianUN arts of Cocknelogr(H.H U.) Cirate - 221 006 (MOJA

iii	(TENTATIVE) Mechanical Coarse Bar Screen, MOC SS304, Width 0.5 M, Angle of Inclination 80 [°] , Height 10.75 M (Minimum), Bar Size 8 MM x 40 MM, Nos. Bars 15, Clear Spacing 25 MM, Nos. Clear Spacings 14, Maximum Velocity through Screen 1.2 M/s, to suit underground Mechanical Coarse Bar Screen Channel having Peak Flow Rate 0.406 M ³ /s, Dimensions Length 5.0 M, Width 0.8 M (including 0.3 M Width for Screen Drive Mechanism), Side Water Depth (Upstream, Max) 1.0 M, Side Water Depth (Downstream) 0.85 M, Upstream Free Board (to Top or Wet Well) 8.35 M, Head Loss across Screen 0.15 M (Max), Height of Conveyor Belt above Channel Top of Strucure Level 0.6 M (approx.), Height of Screen Top above Conveyor Belt 0.5 M (approx.), complete with Control Panel, Electric Motor, Drive Arrangement, Mechanical Travelling Rakes and all Accesories. Note 1: The underground Mechanical Coarse Bar Screen Channel will be constructed at Invert Level RL 40.85 M (w.r.t. Finished Ground Level 49.20 M) or RCC Platform on top of a Wet Well having Dimensions 14.0 M Diameter x 1.2 M SWD with Top Water Level RL 40.55 M such that Invert Level of Screen Channel is 0.3 M above Wet Well Top of Structure Level and discharged to a Hand Cart positioned at Ground Level outside the Wet Well. Note 3. Screen operation will be Timer Controlled.	f	1	IPS2	
iv	(as per Manufacturer Standard) complete with Electric Motor/ Drive Assembly/ Pulleys/ Rollers/ Base Frame/ Discharge Chute and all Accessories.	Set	1	IPS2	
v	(TENTATIVE) Mechanical Coarse Bar Screen, MOC SS304, Width 0.65 M, Angle of Inclination 80 ⁹ , Height 10.6 M (Minimum), Bar Size 8 MM x 40 MM, Nos. Bars 20, Clear Spacing 25 MM, Nos. Clear Spacings 19, Maximum Velocity through Screen 1.2 M/s, to suit underground Mechanical Coarse Bar Screen Channel having Peak Flow Rate 0.641 M ³ /s, Dimensions Length 5.0 M, Width 0.95 M (including 0.3 M Width for Screen Drive Mechanism), Side Water Depth (Upstream, Max) 1.15 M, Side Water Depth (Downstream) 1.0 M, Upstream Free Board (to Top of Wet Well) 8.0 M, Head Loss across Screen 0.15 M (Max), Height of Conveyor Belt above Channel Top of Strucure Level 0.6 M (approx.), Height of Screen Top above Conveyor Belt 0.5 M (approx.), complete with Control Panel, Electric Motor, Drive Arrangement, Mechanical Travelling Rakes and all Accesories. Note 1: The underground Mechanical Coarse Bar Screen Channel will be constructed at Invert Level RL 40.20 M (w.r.t. Finished Ground Level 47.50 M) on RCC Platform on top of a Wet Well having Dimensions 14.0 M Diameter x 1.9 M SWD with Top Water Level RL 38.90 M such that Invert Level of Screen Channel is 0.3 M above Wet Well Top of Structure Level and discharged to a Hand Cart positioned at Ground Level outside the Wet Well. Note 3. Screen operation will be Timer Controlled.				
vi	Belt Conveyor, Horizontal Troughed Type, Length 8.0 M c/c, Belt Width 0.6 M, Speed/ Belt MOC (as per Manufacturer Standard) complete with Electric Motor/ Drive Assembly/ Pulleys/ Rollers/ Base Frame/ Discharge Chute and all Accessories.	Set Set	1	IPS3 IPS3	
vii	(TENTATIVE) Mechanical Coarse Bar Screen, MOC SS304, Width 0.3 M, Angle of Inclination (380°, Height 10.25 M (Minimum), Bar Size 8 MM x 40 MM, Nos. Bars 9, Clear Spacing 25 MM, Nos. Clear Spacings 8, Maximum Velocity through Screen 1.2 M/s, to suit underground Mechanical Coarse Bar Screen Channel having Peak Flow Rate 0.186 M ³ /s, Dimensions Length 5.0 M, Width 0.6 M (including 0.3 M Width for Screen Drive Mechanism), Side Water Depth (Upstream, Max) 0.8 M, Side Water Depth (Downstream) 0.65 M, Upstream Free Board (to Top of Wet Well) 8.0 M, Head Loss across Screen 0.15 M (Max), Height of Conveyor Belt above Channel Top of Strucure Level 0.6 M (approx.), Height of Screen Top above Conveyor Belt 0.5 M (approx.), complete with Control Panel, Electric Motor, Drive Arrangement, Mechanical Travelling Rakes and all Accessories. Note 1: The underground Mechanical Coarse Bar Screen Channel will be constructed at Invert Level RL 42.15 M (w.r.t. Finished Ground Level 50.00 M) on RCC Platform on top of a Wet Well having Dimensions 11.0 M Diameter x 1.0 M SWD with Top Water Level RL 41.85 M such that Invert Level of Screen Channel is 0.3 M above Wet Well Top of Structure Level and discharged to a Hand Cart positioned at Ground Level outside the Wet Well. Note 3. Screen operation will be Timer Controlled.	ntem	Baperj	ee, Ph.D. Engineering Kolngy(B.H.	D.
viii	Belt Conveyor, Horizontal Troughed Type, Length 6.5 M c/c, Belt Width 0.6 M, Speed/ Belt MOC (as per Manufacturer Standard) complete with Electric Motor/ Drive Assembly/ Pulleys/ Rollers/ Base Frame/ Discharge Chute and all Accessories.	Set	1	IPS4	
•					

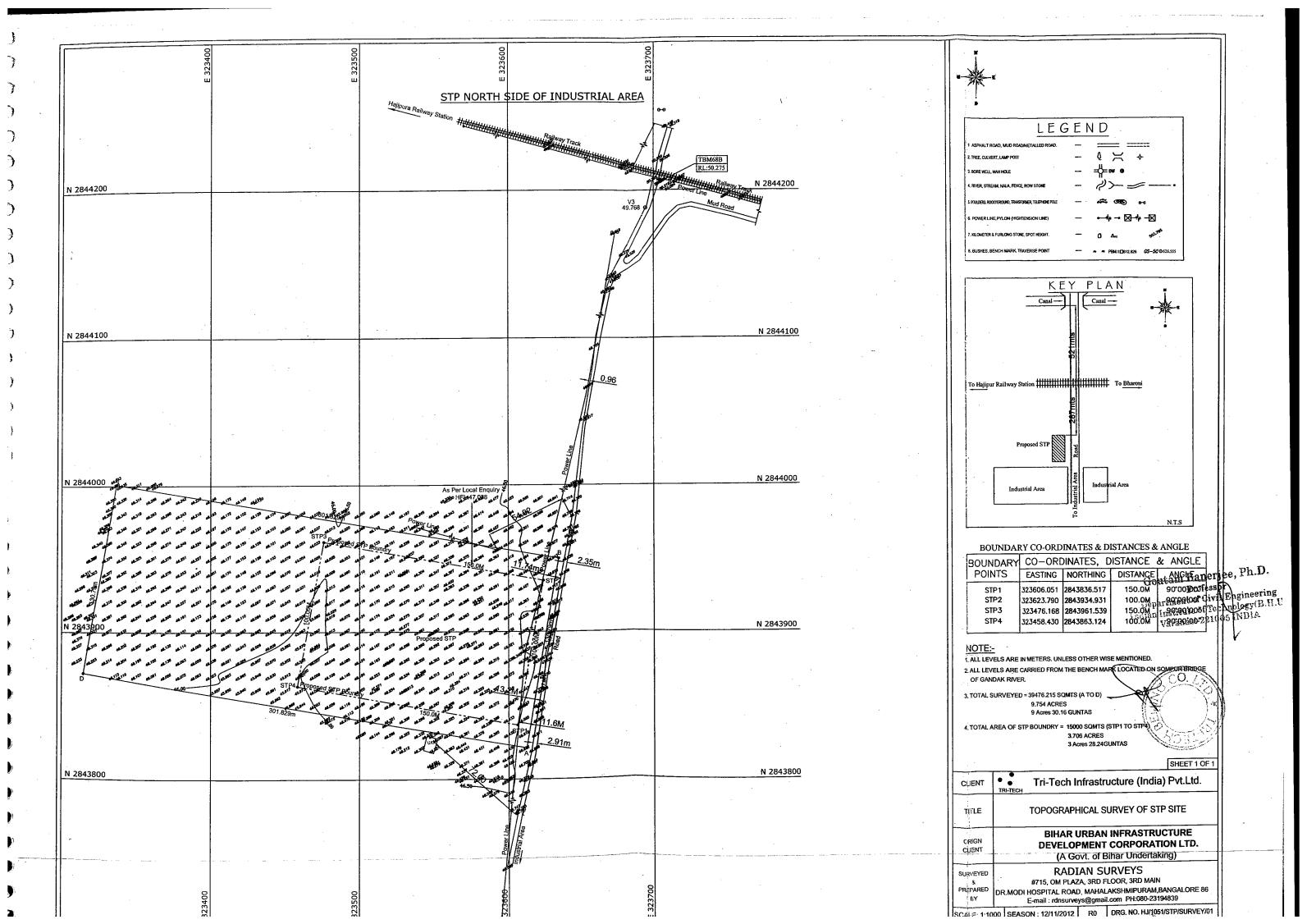
_____ ·

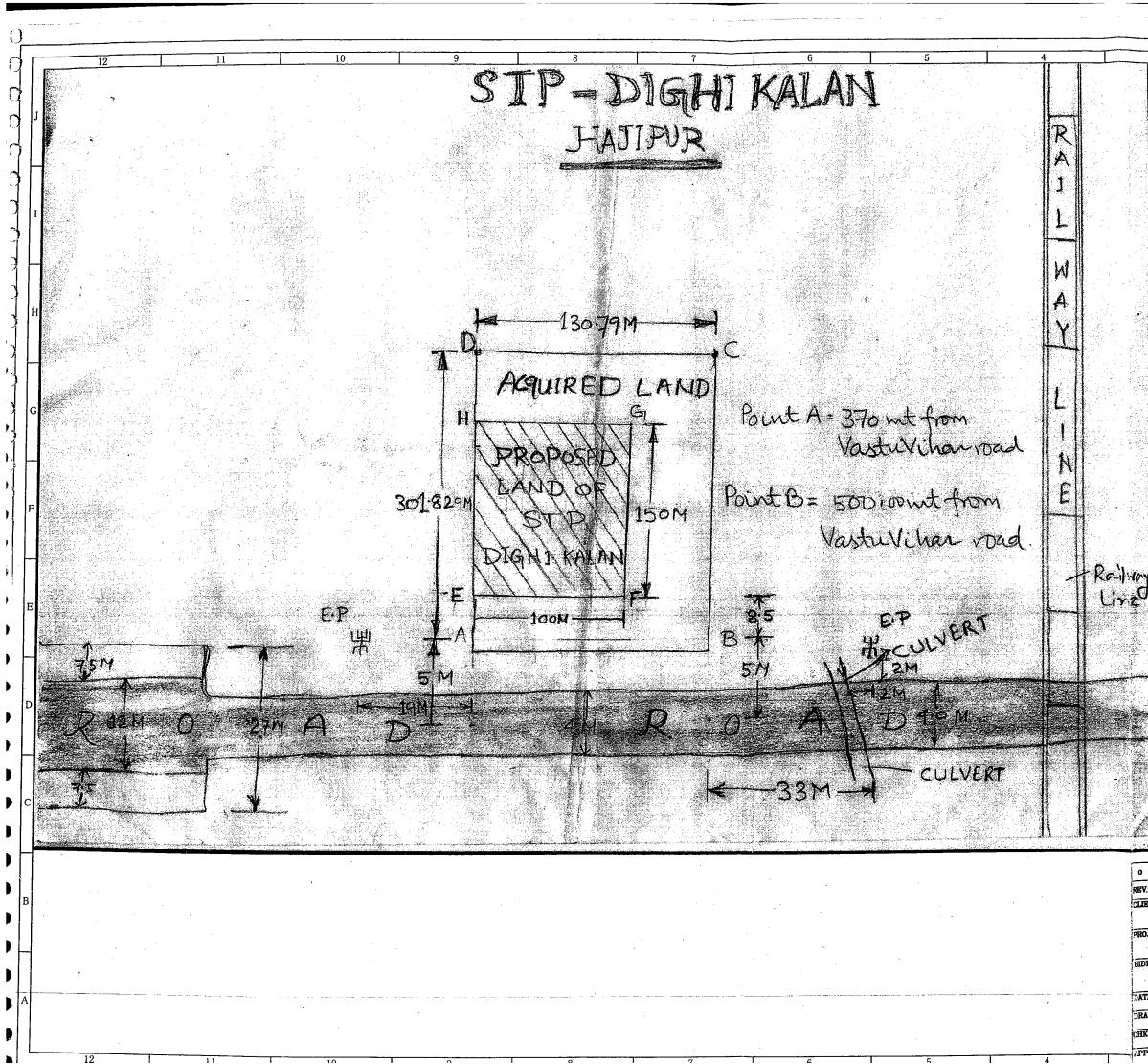
ii	Manual Coarse Bar Screen, MOC SS304, Width 0.4 M, Angle of Inclination 60 ⁰ , Height 1.5 M, Bar Size 8 MM x 40 MM, Nos. Bars 13, Clear Spacing 25 MM, Nos. Clear Spacings 12, Maximum Velocity through Screen 1.2 M/s, to suit underground Manual Coarse Bar Screen Channel having Peak Flow Rate 0.406 M ³ /s, Dimensions Length 5.0 M, Width 0.4 M, Side Water Depth (Upstream, Max) 1.15 M, Side Water Depth (Downstream) 1.0 M, Upstream Free Board (to Top of Screen Channel) 0.5 M, Head Loss across Screen 0.15 M (Max), complete with Lifting Arrangement and 2 Nos. Manual Rakes. Note 1: The underground Manual Coarse Bar Screen Channel will be constructed at Invert Level RL 40.85 M (w.r.t. Finished Ground Level 49.20 M) on RCC Platform on top of a Wet Well having Dimensions Diameter 14.0 M x 1.2 M SWD and Top Water Level RL 40.55 M such that Invert Level of Screen Channel is 0.3 M above Wet Well Top Water Level. Note 2: Screenings will be manually raked on to a RCC Perforated Platform and then	Set	_1	IPS1
i	Manual Coarse Bar Screen, MOC SS304, Width 0.3 M, Angle of Inclination 60 ⁰ , Height 1.2 M, Bar Size 8 MM x 40 MM, Nos. Bars 7, Clear Spacing 25 MM, Nos. Clear Spacings 6, Maximum Velocity through Screen 1.2 M/s, to suit underground Manual Coarse Bar Screen Channel having Peak Flow Rate 0.150 M ³ /s, Dimensions Length 5.0 M, Width 0.3 M, Side Water Depth (Upstream, Max) 0.7 M, Side Water Depth (Downstream) 0.55 M, Upstream Free Board (to Top of Screen Channel) 0.5 M, Head Loss across Screen 0.15 M (Max), complete with Lifting Arrangement and 2 Nos. Manual Rakes. Note 1: The underground Manual Coarse Bar Screen Channel will be constructed at Invert Level RL 40.10 M (w.r.t. Finished Ground Level 48.40 M) on RCC Platform on top of a Wet Well having Dimensions Diameter 10.0 M x 1.0 M SWD and Top Water Level RL 39.80 M such that Invert Level of Screen Channel is 0.3 M above Wet Well Top Water Level. Note 2: Screenings will be manually raked on to a RCC Perforated Platform and then transferred to Wet Well Top of Structure Level through Bucket - Chain Pulley Arrangement and			
3.0	MANUAL COARSE BAR SCREENS			
x	Belt Conveyor, Horizontal Troughed Type, Length 10.5 M c/c, Belt Width 0.6 M, Speed/ Belt MOC (as per Manufacturer Standard) complete with Electric Motor/ Drive Assembly/ Pulleys/ Rollers/ Base Frame/ Discharge Chute and all Accessories.	Set	1	TPS
ix	(TENTATIVE) Mechanical Coarse Bar Screen, MOC SS304, Width 0.95 M, Angle of Inclination 80 ⁰ , Height 9.95 M (Minimum), Bar Size 8 MM x 40 MM, Nos. Bars 33, Clear Spacing 20 MM, Nos. Clear Spacings 32, Maximum Velocity through Screen 1.2 M/s, to suit underground Mechanical Coarse Bar Screen Channel having Peak Flow Rate 0.859 M ³ /s, Dimensions Length 5.0 M, Width 1.25 M (including 0.3 M Width for Screen Drive Mechanism), Side Water Depth (Upstream, Max) 1.1 M, Side Water Depth (Downstream) 0.95 M, Downstream Free Board (to Top of Wet Well) 7.45 M, Head Loss across Screen 0.15 M (Max), Height of Conveyor Belt above Channel Top of Strucure Level 0.6 M (approx.), Height of Screen Top above Conveyor Belt 0.5 M (approx.), complete with Control Panel, Electric Motor, Drive Arrangement, Mechanical Travelling Rakes and all Accesories. Note 1: The underground Mechanical Coarse Bar Screen Channel will be constructed at Invert Level RL 38.75 M (w.r.t. Finished Ground Level 46.40 M) on RCC Platform on top of a Wet Well having Dimensions Diameter 18.5 M x 1.9 M SWD and Top Water Level RL 38.45 M such that Invert Level of Screen Channel is 0.3 M above Wet Well Top of Structure Level and discharged to a Hand Cart positioned at Ground Level outside the Wet Well. Note 3. Screen operation will be Timer Controlled.		1	TPS

Gouten Banerjee, Ph.D. Professor Department of Civil Engineering Adding Institute Wir Technology (B.S. U.) War and an 201000 (CDLA)

iii	Manual Coarse Bar Screen, MOC SS304, Width 0.6 M, Angle of Inclination 60 ⁰ , Height 1.7 M, Bar Size 8 MM x 40 MM, Nos. Bars 18, Clear Spacing 25 MM, Nos. Clear Spacings 17, Maximu Velocity through Screen 1.2 M/s, to suit underground Manual Coarse Bar Screen Channel having Peak Flow Rate 0.642 M ³ /s, Dimensions Length 5.0 M, Width 0.6 M, Side Water Depth (Upstream, Max) 1.15 M, Side Water Depth (Downstream) 1.0 M, Upstream Free Board (to Top Screen Channel) 0.5 M, Head Loss across Screen 0.15 M (Max), complete with Lifting Arrangement and 2 Nos. Manual Rakes. Note 1: The underground Manual Coarse Bar Screen Channel will be constructed at Invert Level RL 40.20 M (w.r.t. Finished Ground Level 47.50 M) of RCC Platform on top of a Wet Well having Dimensions Diameter 14.0 M x 1.9 M SWD and Top Water Level RL 38.90 M such that Invert Level of Screen Channel is 0.3 M above Wet Well Top Water Level. Note 2: Screenings will be manually raked on to a RCC Perforated Platform and they transferred to Wet Well Top of Structure Level through Bucket - Chain Pulley Arrangement and disposed off manually to Hand Cart at Ground Level.	of On	et 1	IPS3
iv	Manual Coarse Bar Screen, MOC SS304, Width 0.3 M, Angle of Inclination 60 ⁰ , Height 1.3 M, Bar Size 8 MM x 40 MM, Nos. Bars 8, Clear Spacing 25 MM, Nos. Clear Spacings 7, Maximum Velocity through Screen 1.2 M/s, to suit underground Manual Coarse Bar Screen Channel having Peak Flow Rate 0.186 M ³ /s, Dimensions Length 5.0 M, Width 0.3 M, Side Water Depth (Upstream, Max) 0.8 M, Side Water Depth (Downstream) 0.65 M, Upstream Free Board (to Top of Screen Channel) 0.5 M, Head Loss across Screen 0.15 M (Max), complete with Lifting Arrangement and 2 Nos. Manual Rakes. Note 1: The underground Manual Coarse Bar Screen Channel will be constructed at Invert Level RL 42.15 M (w.r.t. Finished Ground Level 50.00 M) of RCC Platform on top of a Wet Well having Dimensions Diameter 11.0 M x 1.0 M SWD and Top Water Level RL 41.85 M such that Invert Level of Screen Channel is 0.3 M above Wet Well Top Water Level. Note 2: Screenings will be manually raked on to a RCC Perforated Platform and then transferred to Wet Well Top of Structure Level through Bucket - Chain Pulley Arrangement and disposed off manually to Hand Cart at Ground Level.	f		
v	Manual Coarse Bar Screen, MOC SS304, Width 0.85 M, Angle of Inclination 60 ⁰ , Height 1.6 M, Bar Size 8 MM x 40 MM, Nos. Bars 30, Clear Spacing 20 MM, Nos. Clear Spacings 29, Maximum Velocity through Screen 1.2 M/s, to suit underground Manual Coarse Bar Screen Channel having Peak Flow Rate 0.859 M ³ /s, Dimensions Length 5.0 M, Width 0.85 M, Side Water Depth (Upstream, Max) 1.1 M, Side Water Depth (Downstream) 0.85 M, Downstream Free Board (to Top of Screen Channel) 0.5 M, Head Loss across Screen 0.15 M (Max), complete with Lifting Arrangement amd 2 Nos. Manual Rakes. Note 1: The underground Manual Coarse Bar Screen Channel will be constructed at Invert Level RL 38.45 M (w.r.t. Ground Level 0.0 M) on RCC Platform on top of a Wet Well having Dimensions Diameter 18.5 M x 1.45 M SWD and Top Water Level RL 38.45 M such that Invert Level of Screen Channel is 0.3 M above Wet Well Top Water Level. Note 2: Screenings will be manually raked on to a RCC Perforated Platform and then transferred to Wet Well Top of Structure Level through Bucket - Chain Pulley Arrangement and disposed off manually to Hand Cart at Ground Level.			IPS4
		Set		TPS
4.0	SUBMERSIBLE PUMPS		<u> </u>	
			<u> </u>	+
i	(TENTATIVE) Raw Sewage Transfer Pumps, Submersible Non Clog, 3 Working + 1 Stand-By, MOC Casing Cast Iron/ Impeller CF8M/ Shaft/ Fasteners/ Foundation Bolts SS 316, Capacity 185.0 M ³ /Hour x Head 26.0 MWC, Solid Handling Size 100 MM, Fluid Sewage, Design Specific Gravity 1.0 complete with Control Panel/ Electric Motor (IP 68 w/ Overload Protection/ Temperature Trip and Moisture Trip) / Duck Foot Bend/ Auto Coupling/ SS 304 Lifting Chain, SS 304 Guide Rail and all Accessories.	Set		IDG1
ii	Raw Sewage Transfer Pumps, Submersible Non Clog, 4 Working + 1 Stand-By, MOC Casing Cast Iron/ Impeller CF8M/ Shaft/ Fasteners/ Foundation Bolts SS 316, Capacity 370.0 M ³ /Hour x Head 21.0 MWC, Solid Handling Size 100 MM, Fluid Sewage, Design Specific Gravity 1.0 complete Geptin with Control Panel/ Electric Motor (IP 68 w/ Overload Protection/ Term entropy and Market States)	Set	rofessor J.C.M.Y ×C.R.S.S	IPS1 e, Ph.D. aconsering officient S.H.C.) IPS2
		~~~		<u> </u>

<:


iii	Raw Sewage Transfer Pumps, Submersible Non Clog, 4 Working + 1 Stand-By, MOC Casing Cas Iron/ Impeller CF8M/ Shaft/ Fasteners/ Foundation Bolts SS 316, Capacity 580.0 M ³ /Hour x Head 25.0 MWC, Solid Handling Size 100 MM, Fluid Sewage, Design Specific Gravity 1.0 complete with Control Panel/ Electric Motor (IP 68 w/ Overload Protection/ Temperature Trip and Moisture Trip) / Duck Foot Bend/ Auto Coupling/ SS 304 Lifting Chain, SS 304 Guide Rail and all Accessories.			
iv	Raw Sewage Transfer Pumps, Submersible Non Clog, 4 Working + 1 Stand-By, MOC Casing Cast Iron/ Impeller CF8M/ Shaft/ Fasteners/ Foundation Bolts SS 316, Capacity 170.0 M ³ /Hour x Head 33.0 MWC, Solid Handling Size 100 MM, Fluid Sewage, Design Specific Gravity 1.0 complete	Set	5	IPS
	with Control Panel/ Electric Motor (IP 68 w/ Overload Protection/ Temperature Trip and Moisture Trip) / Duck Foot Bend/ Auto Coupling/ SS 304 Lifting Chain, SS 304 Guide Rail and all Accessories.	Set	5	IPS
v	(TENTATIVE) Raw Sewage Transfer Pumps, Submersible Non Clog, 4 Working + 1 Stand-By, MOC Casing Cast Iron/ Impeller CF8M/ Shaft/ Fasteners/ Foundation Bolts SS 316, Capacity 520.0 M ³ /Hour x Head 17.0 MWC, Solid Handling Size 100 MM, Fluid Sewage, Design Specific Gravity 1.0 complete with Control Panel/ Electric Motor (IP 68 w/ Overload Protection/ Temperature Trip and Moisture Trip) / Duck Foot Bend/ Auto Coupling/ SS 304 Lifting Chain, SS 304 Guide Rail and all Accessories.	Set	5	
iii	Return Sludge Pumps, Submersible Non Clog, 2 Working + 1 Stand-By, MOC Casing Cast Iron/ Impeller CF8M/ Shaft/ Fasteners/ Foundation Bolts SS 316, Capacity 475.0 M ³ /Hour x Head 7.5 MWC, Biological Soft Solid Handling Size 100 MM, Fluid Sewage, Design Specific Gravity 1.02 complete with Control Panel/ Electric Motor (IP 68 w/ Overload Protection/ Temperature Trip and Moisture Trip) / Duck Foot Bend/ Auto Coupling/ SS 304 Lifting Chain, SS 304 Guide Rail and all Accessories.	Set	3	STP
	Flushing Pumps, Submersible Non Clog, 1 Working + 1 Stand-By, MOC Casing Cast Iron/ Impeller CF8M/ Shaft/ Fasteners/ Foundation Bolts SS 316, Capacity 15.0 M ³ /Hour x Head 25.0 MWC, Solid Handling Size 40 MM, Fluid Sewage, Design Specific Gravity 1.02 complete with Control Panel/ Electric Motor (IP 68 w/ Overload Protection/ Temperature Trip and Moisture Trip) / Duck Foot Bend/ Auto Coupling/ SS 304 Lifting Chain, SS 304 Guide Rail and all Accessories.	Set	2	STP
				- 511
.0	MECHANICAL MAT/ STEP FINE SCREENS			
	ADDIAN (ICALI MATI) STET FILE SCREENS	<u> </u>		
	Mechanical Mat/ Step Fine Screen, MOC SS 304, Width 0.6 M, Angle of Inclination 40 ⁰ , Height 2.6 M (Minimum), Bar Width 2 MM, Nos. Bars 71, Clear Spacing 6 MM, Nos. Clear Spacings 72, Maximum Velocity through Screen 1.0 M/s, to suit Fine Screen Channel having Peak Flow Rate 0.573 M ³ /s and Dimensions Length 6.0 M Length, Width 0.9 M (including 0.3 M Width for Screen Drive Mechanism), Side Water Depth (Upstream, Max) 1.3 M SWD, Side Water Depth (Downstream) 1.0 M, Downstream Free Board 0.5 M (to Top of Screen Channel), Head Loss across Screen 300 MM (Maximum), Height of Conveyor Belt above Channel Top of Structure Level 0.6 M (approx.), Height of Screen Top above Conveyor Belt 0.5 M (approx.), complete with Electric Motor/ Drive Arrangement/ Control Panel (with ON/OFF Operation linked to Ultrasonic Differential Level Sensor/ Overload Relay/ Emergency Stop)/ Lifting or Tilting Arrangement (for Inspection/ Cleaning/ Maintenance) and all Accessories. Note 1: Screenings will be lifted up to a Conveyor Belt above Screen Channel Top of Structure Level and discharged via Chute to a Hand Cart positioned at Ground Level. Note 2. Screen operation will be controlled using Ultrasonic Differential Level Sensor linked to Control Panel.			
[(	Belt Conveyor, Horizontal Troughed Type, Length 3.1 M c/c, Belt Width 0.6 M, Speed/ Belt MOC as per Manufacturer Standard) complete with Electric Motor/ Drive Assembly/ Pulleys/ Rollers/ Base Frame/ Discharge Chute and all Accessories.	Set Set	2	STP STP
	MECHANICAL DETRITUS TYPE GRIT CHAMBERS			
<b>L</b>	CO. LTD CO. LTD TD TTD TTD TTD	Delvera	Prof Nort of C Virate of	lerjee, F essor Svil Eagit Tesimolog Aldo DAD


i	Central Drive Head complete with Drive Motor (w/ Overload Protection) / Gear Box/ Full Diamet MS Epoxy Painted Scraper Assembly (w/ Rubber Sqeezers) to suit Square Mechanical Detritus Type Grit Chamber having Dimensions 5.9 M x 5.9 M x 0.9 M SWD + 0.5 M FB/ MS Epoxy Painted Rake Classifier w/ Drive Motor/ Gear Box/ CI Organic Return Pump w/ Electric Motor ar			
	all Accesories.	Se	+	2
			<u>.                                    </u>	2 5
7.0	AIR BLOWERS			
	Air Playane Train Labor Distance and Constant and A			
i	Air Blowers, Twin Lobe Positive Displacement Air Cooled, Capacity 4000.0 M ³ /Hour x Discharge Pressure 0.6 Kg/cm ² , MOC Cast Iron, complete w/ all Electric Motors/ Variable Frequency Drives and all Accessories (including Base Plate/ Safety Valve/ Pulleys/ V Belts/ V Belt Guard/ Eye Bolts Suction Filter/ Silencer/ Pressure Relief Valve/ Pressure Gauge/ Acoustic Hood/ Rubber Bellows/ Anti Vibration Pad)			3 S
		+		
8.0	SECONDARY CLARIFIER			
i	Secondary Clarifier Peripheral Drive Mechanism consisting of Electric Motor, Worm Reduction Gear Box, Chain Sprocket Drive and Cast Steel Nylon Rubber Coated Drive and Idle Wheel Assembly, MS Bitumen Painted Travelling Half Diameter Bridge, Full Diameter MS Epoxy Painted Scraper Assembly (w/ Rubber Squeezers), Central Bearing, Current Collector and 5 MM Thick FRP V Notch (200 MM Height, 200 MM c/c w/ Adjustible Fixing Arrangement), to suit Bottom Feed Secondary Clarifier having Diameter 44.7 M, Side Water Depth 3.0 M, Free Board 0.5 M, Bottom Slope 1:12 (approx.), Central Column OD 1.2 M, Annular Sludge Hopper 1.0 M Width x 1.0 M Height	Sat		
·		Set	1	
9.0	GRAVITY SLUDGE THICKENER	<u> </u>	+	
	MS Bitumen Painted Full Diameter Fixed Bridge, Central Drive Mechanism consisting of Electric			
i	Motor, Worm Reduction Gear Box/ Bevel Gear (as applicable), MS Epoxy Painted Feed Well and Central Shaft/ Rotating Cage (as applicable), Full Diameter MS Epoxy Painted Picket and Scraper Assembly (w/ Rubber Squeezers), Central Bearing (as applicable), to suit Top Feed Gravity Sludge Thickener having Diameter 15.9 M, Side Water Depth 4.5 M, Free Board 0.5 M, Bottom Slope (as applicable), Central Column (as applicable), Circular Sludge Hopper 0.6 M Width (approx.) x 0.6 M Height (approx.)	Set	1	ST
			+	
).0	CENTRIFUGE FEED PUMPS		<u> </u>	
i l ^e	Helical Screw Positive Displacement Pumps, 1 Working + 1 Stand-By, Capacity 15.0 M ³ /Hour x 5.0 MWC Discharge Head, capable of passing Soft Biological Solids Size 100 MM, MOC Cast fron, complete with Electric Motor/ V Belts/ V Belt Guard/ Base Plate (MS Epoxy Painted)/ Foundation Bolts and all Accessories.	Set	2	STP
			<u></u>	
.0 5				
	SOLID BOWL CENTRIFUGES			
	Solid Bowl Centrifuge, Type Co-Current/ Counter Current, 1 Working + 1 Stand-By, Capacity 15.0 M ³ /Hour (at Biological Sewage Sludge concentration 3.0% Dry Solids Basis), complete with			
E E B	Differential Speed Adjustment)/ Overload Protection/ Adjustable Weir Plate/ MS Epoxy Painted Base Frame w/ Anti Vibration Pads and all Accessories. MOC SS 304 (Wetted Parts) Feed			
N E E B	Securic Motor/ V Belts/ Pulleys (suitable for Speed Adjustment)/ Epicyclic Gear (suitable for			
N E E B	Differential Speed Adjustment)/ Overload Protection/ Adjustable Weir Plate/ MS Epoxy Painted Base Frame w/ Anti Vibration Pads and all Accessories. MOC SS 304 (Wetted Parts) Feed	Set	2	STP
N E E B	Differential Speed Adjustment)/ Overload Protection/ Adjustable Weir Plate/ MS Epoxy Painted Base Frame w/ Anti Vibration Pads and all Accessories. MOC SS 304 (Wetted Parts) Feed	Set	2	STP
	Goutam Banerjee, Ph.D. Goutam Banerjee, Ph.D.	Set	2	STP
	Contam Banerjee, Ph.D. Goutam Banerjee, Ph.D. Contemported Contemport Contemported Contemport Contemported Contemport Contemported Contemport Contemported Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport Contemport C	Set	2	STP
	Goutam Banerjee, Ph.D. Goutam Banerjee, Ph.D.	Set	2	STP
	Active Motor/ V Belts/ Pulleys (suitable for Speed Adjustment)/ Epicyclic Gear (suitable for Differential Speed Adjustment)/ Overload Protection/ Adjustable Weir Plate/ MS Epoxy Painted Base Frame w/ Anti Vibration Pads and all Accessories. MOC SS 304 (Wetted Parts). Feed Chamber/ Solid Bowl/ Solid Discharge Outlet to be Tungsten Carbide lined. Goutam Banerjee, Ph.D. Goutam Banerjee, Ph.D. Contemporter of Civil Engineering Contemporter of Civil Engineering	Set	2	STP

SLUICE GATES	JASH/ IVC/ YASHWANT/ ORIENTAL
MECHANICAL/ MANUAL COARSE BAR SCRE	ENS JASH/ VOLTAS/ SHIVPAD/ METAL FAB/
	MACMET
MECHANNICAL STEP/ MAT FINE SCREENS	JASH/ HUBER (GERMANY)
MECHANICAL GRIT CHAMBERS	VOLTAS/ SHIVPAD/ DORR OLIVER/ FILSEP
AIR BLOWERS	SWAM/ EVEREST/ KAY/ KULKARNI
SECONDARY CLARIFIERS	VOLTAS/ SHIVPAD/ DORR OLIVER/ FILSEP
	EIMCO KCP
GRAVITY SLUDGE THICKENERS	VOLTAS/ SHIVPAD/ DORR OLIVER/ FILSEP
	EIMCO KCP
CENTRIFUGE FEED PUMPS	ROTO/ RAMO/ TUSHACO/ UT PUMPS
SOLID BOWL CENTRIFUGES	ALFA LAVAL/ HILER/ PENWALT/
	HUMBOLDT
VALVES	JASH/ IVC/ FOURESS/ BDK/APOORVA
	DURGA/ CRANE/ KIRLOSKAR/ INTER
MIXERS/ AGITATORS	ATE/ VOLTAS/ REMI/ RATHI/ FIBRE
	& FIBRE
HOIST	JD HOIST & CRANE/ BRADY & MORRIS/
	EDDY CRANES/ REVA
BELT CONVEYOR	ADVANCE DYANAMIC/ MACLEAN
	PROJECT/ METAL FABRICATED
DI PIPES	JINDAL/ JAY BALAJI/ ELECTROSTEEL
DI SPECIALS	KEJRIWAL/ TRUFORM/ RG INDUSTRIES/
	KISWORK/ LANCO
MOTORS	CROMPTON/ JYOTI/ ABB/ MARATHON
	KIRLOSKAR

Goutam Banerjee, Ph.B. Protessor Department of Civil Engineering Ludian Institute of Technology(B.H.U.) Varanasi, 221005 INTIA

BROAD SPECIFICATION OF MECHANICAL EQUIPMENT





Goutam Banerjee, Ph.D. Professor Pepartment of Civil Engineering Separtment of Civil Engineering San Institute of Tockhology(B.H.U.) Varmasi-22100; INDIA MS DR. ADUTT 0 28.11.12 SUBMISSION FOR APPROVAL REV. DATE CHKD. APPD. DRN. DESCRIPTION BIHAR URBAN INFRASTRUCTURE DEVELOPMENT CORPORATION LTD., PATNA 22.0 MLD SEWAGE TREATMENT PLANT AT HAJIPUR, ROJECT: BIHAR TRI-TECHAN TRI-TECH (BEIJING) COMPANY LTD IDDERS NAME: BEIJING, NEW DELHI DATE - 28.11.12 FIELD DIMENSIONAL SURVEY SKETCH OF RAWN .: --M.S. STP SITE HKD .: - DR A DUTT SCALE SHEET HJ/1051/STP/SURVEY/02 A.DUTT 1: 1000 1 OF

wner	: Bihar Urban Infrastructure Devel	opment Co	orporation Lt	d. Patna		
oject	: Sewerage Network and 22 MLD S					
ontractor						
oc. Name	: Tri-Tech (Beijing) Company Ltd. Beijing (New Delhi) : Hydraulic Design Calculations for Terminal Pumping station (TPS)					
oc. No.	: TT/BEI/HJ/1051/TPS/A01					
NO. PARA		<b>REV. 0</b> 1		30.11.2012		
			VALUE	UNIT		
I.0 DESIG	N FLOWRATE					
Average	e Flow Rate, Q _A	:	33.000	MLD		
		:	1375.000	M ³ /Hr		
		:	0.382	M ³ /s		
Peaking	Factor, PF		2.250			
Peak Flo	ow Rate $Q_P = Q_A * PF$	:	3093.750	M³/Hr		
		:	0.859	M³/s		
.0 RECEIN	/ING CHAMBER					
Outfall S	ower to Beesivier Object on Long ( )					
	ewer to Receiving Chamber Invert Level ewer Diameter	:	39.000	М		
	ewer Soffit Level	:	1.200	M		
		:	40.200	M		
	Ground Level (Considered)	:	46.400	M		
	op of Receiving Chamber (Above Ground)	:	0.900	М		
	g Chamber Top of Structure Level ewer Capacity, Q _P	:	47.300	М		
		:	3093.750	M ³ /Hr		
Sewaaa	aval in Outfall Source (Openation 1 -	:	0.859	M³/s		
after Deta	Level in Outfall Sewer (Considered, To be confirn ailed Sewer Network Design)	ned		%		
	ewer Side Water Depth	•	0.960			
	ewer Top Water Level		<b>39.960</b>	M M		
	ewer Wetted Cross Section Area, A	•		171		
Triangle F						
Triangle H			0.360	M		
_	d Angle, θ = Cos -1 (Η/ (D/2))	•				
Triangle E	Base, B = D/2 * Sin $\theta$ *2	•	Goutom Bar	nerjee, Ph.D.		
	Irea, A ₁ = 0.5 * H * B	LTO	O. 417-3 ment of	Civil Engineering Technology(B.H.U.) 21005 INDIA		
		TR				
ydraulic calcula	tion for TPS Page 1 of 3					

i

;.NO.	PARAMETER		VALUE	UNIT
,	Circle Segment Portion Subtended Angle, $\theta_1 = 360^0 - (\theta * 2))$	:	253.740	0
	Outfall Sewer Wetted Cross Section Area, A2	:	0.797	M ²
	Outfall Sewer Wetted Cross Section Area, $A = A_1 + A_2$	:	0.970	M ²
	Outfall Sewer Velocity, $V = Q_P / A$	:	0.886	M/s
	Velocity Head, V ² /2g	:	0.040	М
	Exit Head Loss Co-Efficient, K	:	1.000	
	Exit Head Loss, K * V ² /2g	:	0.040	М
	Receiving Chamber Top Water Level	:	39.920	М
	Say	:	39.900	М
	Gap, Outfall Sewer Invert - Receiving Chamber Invert (Considered)	:	0.250	M
	Receiving Chamber Invert Level	:	38.750	М
	Receiving Chamber Side Water Depth	:	1.150	М
	Free Board	:	7.400	M

### 3.0 MECHANICAL COARSE SCREEN CHANNEL

Peak Flow Rate, Q _P	:	0.859	M ³ /s
Inlet Sluice Gate Width, W	:	0.900	м
Inlet Sluice Gate Side Water Depth, Z	:	0.900	М
Velocity (across Sluice Gate), V = Q _P / W*Z	:	1.061	M/s
Velocity Head = $V^2 / 2g$	:	0.057	М
Sluice Gate Head Loss Co-Efficient	:	0.800	
Head Loss across Sluice Gate, K * V ² / 2g	:	0.046	М
Say	:	0.050	M
Coarse Screen Channel Top Water Level (U/s)	:	39.850	М
Coarse Screen Channel Invert Level		38.750	M
Coarse Screen Channel Side Water Depth (U/s)	:	1.100	М
Head Loss across Coarse Screen (Refer Process Calculations)	:	0.150	M
Coarse Screen Channel Top Water Level (D/s)	:	39.700	м
Coarse Screen Channel Top of Structure Level	:	47.300	Μ
Free Board	:	7.450	M
Finished Ground Level	:	46.400 Goutam Bane	
	TRE		vil Engineering Technology(B.H.U.)

Hydraulic calculation for TPS

5.NO.	PARAMETER		VALUE	UNIT
4.0	RAW SEWAGE SUMP (WET WELL)			
	Coarse Screen Channel Invert Level	:	38.750	М
	Free Fall, Fine Screen Channel IL - Raw Sewage Sump TWL	:	0.300	м
	Raw Sewage Sump Top Water Level	:	38.450	М
	Raw Sewage Sump Side Water Depth	:	1.450	M
	Raw Sewage Sump Invert Level	:	37.000	М
	Finished Ground Level	:	46.400	M
	Dry Well Plinth Level	:	47.300	M
	Height, Dry Well Plinth Level (Above Ground)	:	0.900	М
	Raw Water Sump Top of Structure Level	:	47.300	м
	Raw Water Sump Free Board	:	8.850	М



Goutan Banerjee, Ph.D. Professor Department of Civil Engineering Ann Institute of Technology(B.H.U.) Varenasi-221005 INDIA

		····		<b>_</b>			
wner	: Bihar Urban Infrastructure	Development C	Corporation L	td. Patna			
roject	: Sewerage Network and 22	<b>MLD STP Plant</b>	For Hajipur	Town			
ontractor :Tri-Tech (Beijing) Company Ltd. Beijing (New Delhi)							
- No	mo , Dumping Head Calculation	a for Dow Cow	aga Trancfor	Pump_TPS			
oc. Na	me : Pumping Head Calculation	is for Raw Sew	age fransier	rump=1F3			
oc. No	. : TT/BEI/HJ/1051/TPS/A02	REV. 00	DT	. 30.11.2012			
S.NO.	PARAMETER		VALUE	UNIT			
	Note: Calculations shown below are tent Network Design.	ative subject to fina	lization of Hajip	ur Zone 5 Sewe <b>r</b>			
1.0	Individual Pump Flow Rate, Q	•	520.000	M ³ /Hr			
1.0	individual 1 diffp flow (Vale, Q	•	0.144	M ³ /s			
	Total Nos. Pumps	:	5.000				
	Nos. Pumps Working	:	4.000				
	Nos. Pumps Stand-By	:	1.000	:			
	Combined Pump Flow Rate	:	2080.000	M ³ /Hr			
		:	0.578	M ³ /s			
2.0	STATIC HEAD CALCULATION Raw Sewage Sump Invert Level	:	37.000	М			
	Stilling Chamber Top Water Level	:	48.700	Μ			
	Static Head	:	11.700	Μ			
3.0	PIPE FRICTION LOSS - 300 NB DI K7 I	NDIVIDUAL DELI		M ³ /s			
	Pump Flow Rate, Q		0.144 0.300	M /S			
	Pump Delivery Pipeline Diameter, D		10.000	M			
	Pump Delivery Pipeline Length (Max), L Pipe Velocity, $V = Q/(\pi^*D^*D/4)$	•	2.043	M/s			
	Hazen William Equation, $V = 0.849 * C *$	R ^{0.63} * S ^{0.54}	2.040				
	Hazen William Co-Efficient, C (CPHEEO	Manual) :	100.000	· · · · ·			
	Hydraulic Radius, R = D/4		0.075Gouth	h Banerjew Ph.D. Rrofessor			
		A CONTRACTOR	/ ) · · · · · · · · · · · · · · · · · ·	krotessor ent of Civil Engineering itute of Technology(B.H.U.) anasi-221005 INDIA			
UMPING	HEAD CALCULATION FOR RAW SEWAGE TR	ANSFER PUMP-TPS		Page 1 of 3			

UMPING HEAD CALCULATION FOR RAW SEWAGE TRANSFER PUMP-TPS

Page 1 of 3

Ş

5.NO.	PARAMETER		VALUE	UNIT
	Friction Slope, S(by Calculation) Pipe Friction Loss, H _F = S * L	:	0.02066 <b>0.207</b>	M/M M

### 4.0 PIPE FRICTION LOSS - 600 NB DI K7 COMMON DELIVERY HEADER

Pump Flow Rate, Q	:	0.578	M³/s
Pump Delivery Pipeline Diameter, D	:	0.600	M
Pump Delivery Pipeline Length (Max), L	:	20.000	M
Pipe Velocity, V = Q/ ( $\Pi$ *D*D/4) Hazen William Equation, V = 0.849 * C * R ^{0.63} * S ^{0.54}	:	2.043	M/s
Hazen William Co-Efficient, C (CPHEEO Manual)	:	100.000	
Hydraulic Radius, R = D/4	:	0.150	М
Friction Slope, S (by Calculation) Pipe Friction Loss, H _F = S * L	:	0.00920 <b>0.184</b>	M/M M

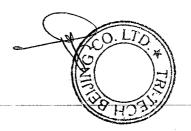
### 5.0 FITTINGS LOSSES - PUMP SUCTION

Pump Flow Rate, Q	:	0.144	M³/s
Pump Suction Diameter, D	:	0.250	Μ
Suction Velocity V = $Q/(\Pi/4*D*D)$	:	2.942	M/s
Velocity Head = $V^2/2g$	:	0.441	М
Entrance Loss Co-Efficient, K	:	0.500	
Pump Suction Fittings Losses = $K * V^2/2g$	:	0.221	М

### 6.0 FITTINGS LOSSES - 300 NB DI K7 INDIVIDUAL PUMP DELIVERY

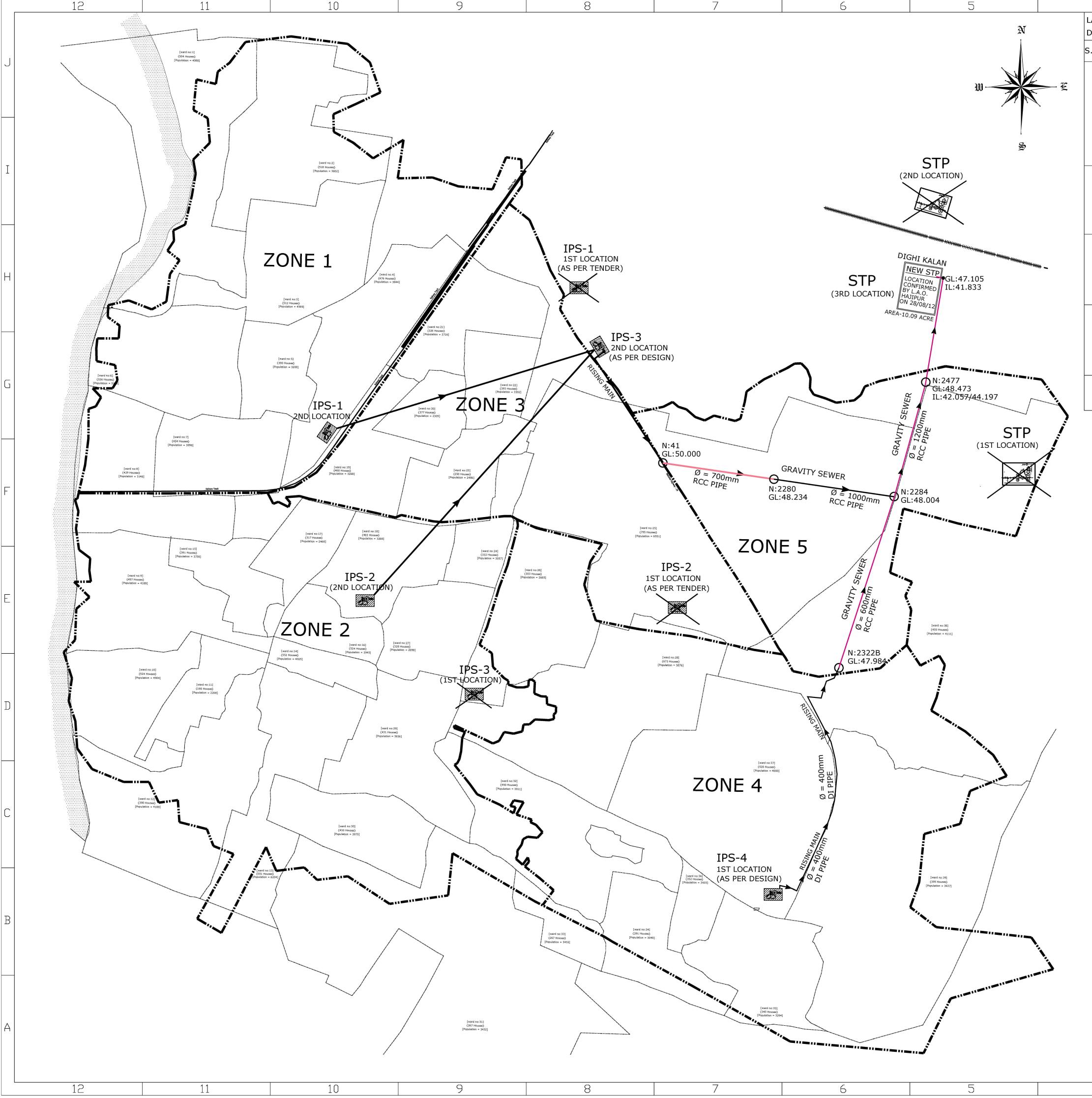
Pump Flow Rate, Q	:	0.144	M ³ /s
Pump Delivery Pipeline Diameter, D		0.300	M
Delivery Velocity V = $Q/(\Pi/4*D*D)$	:	2.043	M/s
Velocity Head = $V^2/2g$	•	0.213	M
Loss Co-Efficient, Reducer 300 NB - 250 NB, K1	:	1.000	
Loss Co-Efficient, $90^{\circ}$ Bends, K ₂	•	1.000	
Nos. 90 ⁰ Bends, N	:	2.000Gout	am Banerjee, Ph.D.
Loss Co-Efficient Non Return Valve, K ₄	:	2.500 Departs	Professor ment/of Civil Engineering stitute of Technology(B.H.U.)
_	- CO	LTD. *	ranasi-221005 INDIA
	MIN	IR	- 

UMPING HEAD CALCULATION FOR RAW SEWAGE TRANSFER PUMP-TP


S.NO.	PARAMETER	,	VALUE	UNIT
	Loss Co-Efficient Butterfly Valve, $K_5$		1.000	
	Total Loss Co-Efficient K = $(K_1 + N^*K_2 + K4 + K5)$	•	6.500	
	Pump Delivery Fittings Losses = K * V ² /2g	:	1.383	М

### 7.0 FITTINGS LOSSES - 600 NB DI K7 COMMON DELIVERY HEADER

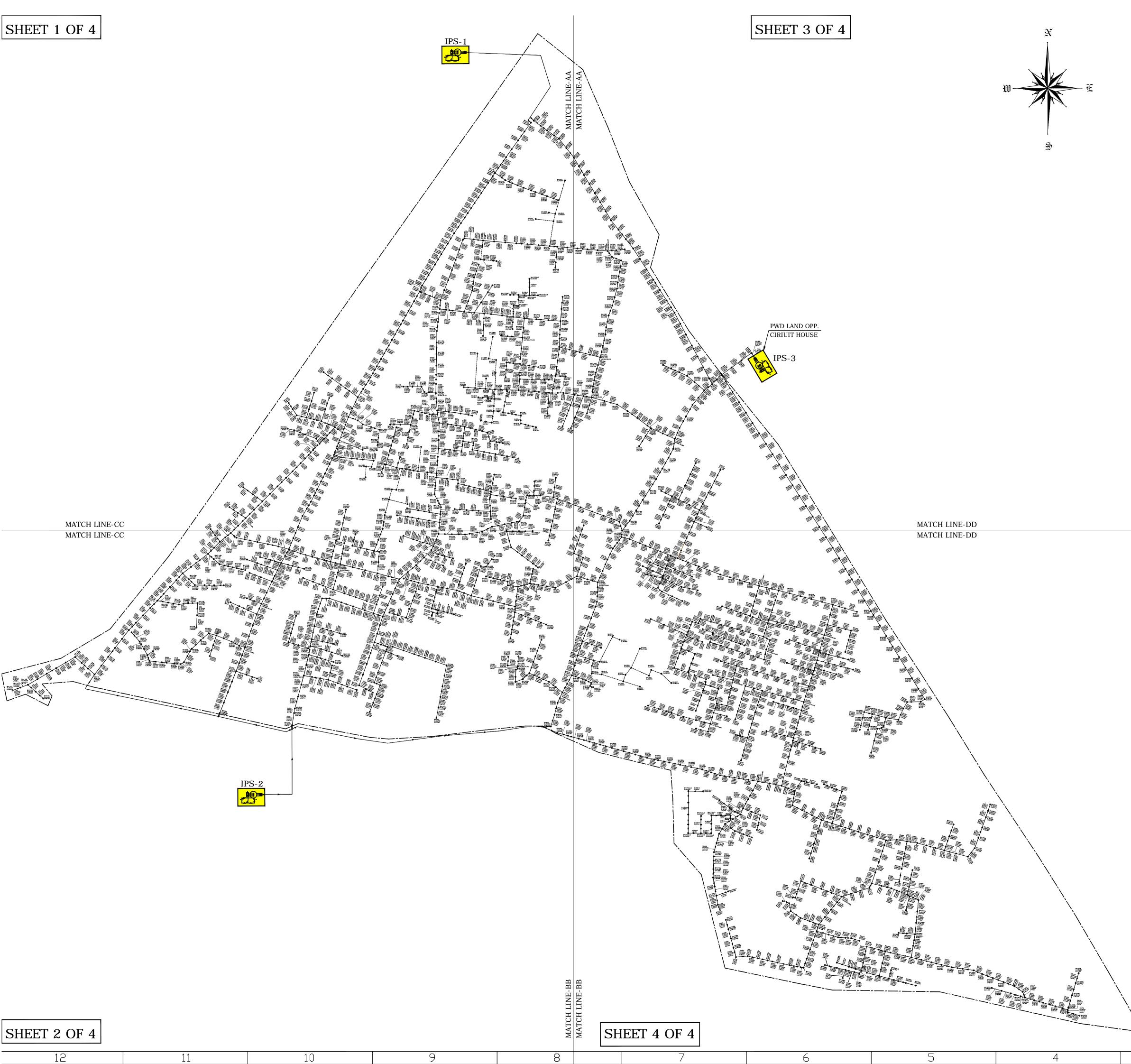
Pump Flow Rate, Q	:	0.578	M³/s
Pump Delivery Pipeline Diameter, D		0,600	М
Delivery Velocity V = Q/(∏/4*D*D)	:	2.043	M/s
Velocity Head = V²/2g	:	0.213	М
Loss Co-Efficient, 90 ⁰ / 45 ⁰ Bends, K ₂	:	1.000	
Nos. 90 ⁰ / 45 ⁰ Bends, N (Max)	:	4.000	
Exit Loss Co-Efficient, K ₆	:	1.000	
+ K5 + K6)	:	5.000	,
Pump Delivery Fittings Losses = K * V ² /2g	:	1.064	Μ


### 7.0 TOTAL HEAD LOSS CALCULATION

Total Head Loss = Static Head + Friction Loss +			
Suction Fittings Loss + Delivery Fittings Loss	• :	14.758	М
Pump Delivery Head (Required)	•	14.800	М
Pump Delivery Head (Provided)	:	17.000	М
Pump Rating	:	45.000	KW



Goutam Banerjee, Ph.D. Professor Department of Civil Engineering Indian Institute of Technology(B.H.U.) Varanasi-221005 INDIA


# Annexure-2

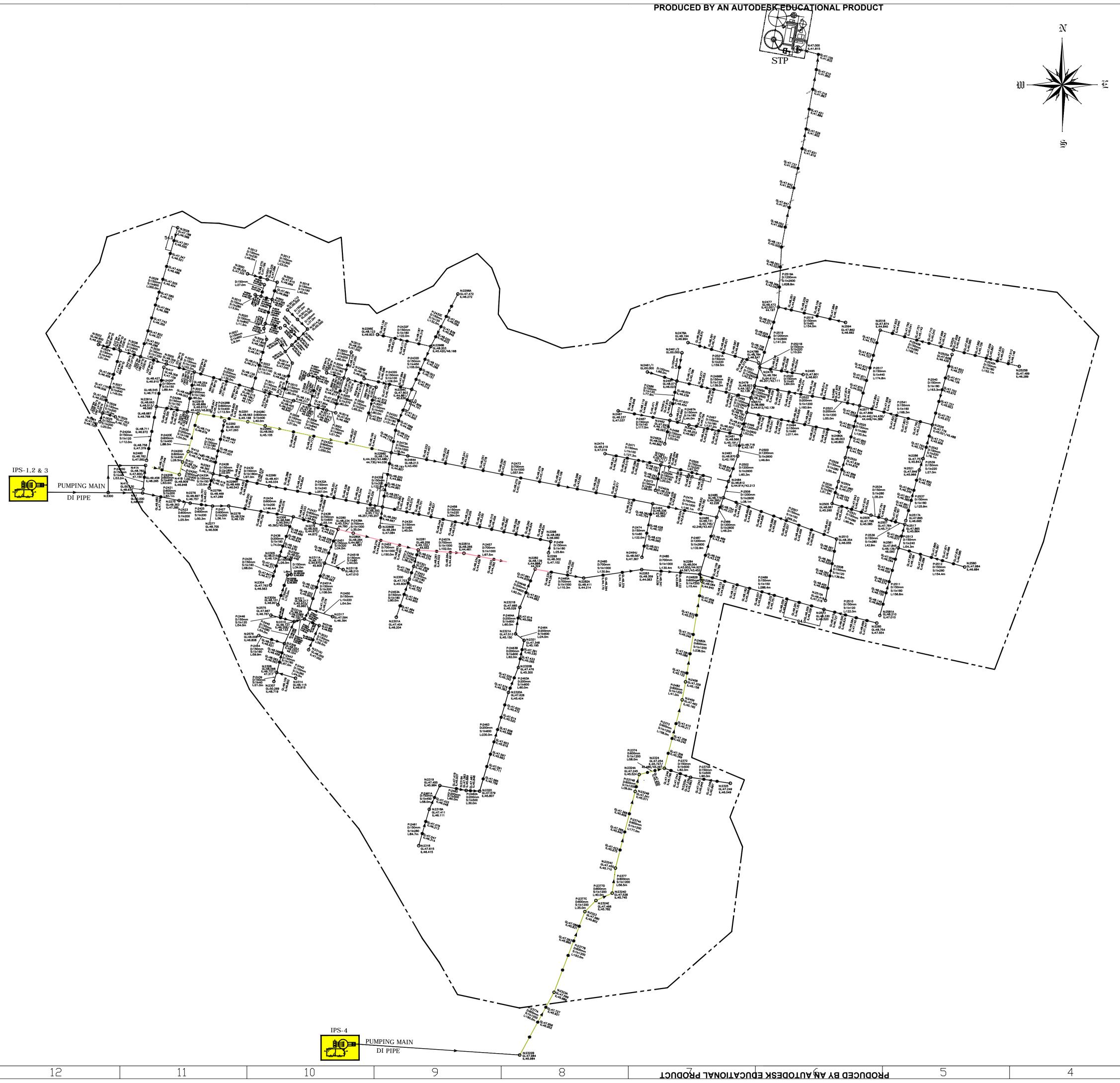




			2 1		
			N W W W W W W W W W W W W W	- 2	J
			A La	77	I
					-1
			EY PLAN EGEND		
PE				_	
DDE			0		
ECTI	ON		►	F	_
			CO:2384		
METE	R		D:200mm		
PE			S:1in 420		
GTH			L:101.5m		_
INDA	RY				-
JNDA	RY				
R			PIPE COLORS		
50					
00 50				1	D
50 00					
50					
00				F	
50					
00 00				ſ	$\bigcirc$
0					<u> </u>
		REVISED	AS PER BUIDCO DISCUSSION P.B. M.B.	ARUN	J
			SCRIPTION DISCUSSION DRN. CHKD.		
	E		JRBAN INFRASTRUCTURE DEVELOPMEN		•
	S	EWERA	CORPORATION LTD., PATNA GE NETWORK & 22 MLD STP PLANT FO	R	
:-			HAJIPUR TOWN		
4	DRAW	ING TITL			
3.			SEWERAGE NETWORK CONSTUCT DRAWING FOR ZONE-I	ION	
	SCALE	SHEET	DRAWING NO.	RE	V.
١		1 OF 1	HJ/1051/SEW/CONST./01	3	






SHEET 2 OF 4				
12	11	10	9	8

				+	HHHHHHHH SEDIGH SEDIGH AREA-10.00	N W W KALAN KALAN KALAN KALAN KALAN KALAN KALAN KALAN KALAN KALAN KALAN KALAN	£↓	J
								) I
						Z		H
		K	EY PLAN	AL.			2	
			EGEND		<b>-</b>			_G
1. SEWER PIPE						_		
2. MISSING LINE								
3. LAYING NOT PO	OSSIBLE	DUE TO	NARROW ROAD -					
4. MANHOLE				Ο				F
5. FLOW DIRECTI	ON							
6. PIPE ID				Co:100				
7. PIPE DIAMETE	R			D:200mi	m			
8. PIPE SLOPE				S:1in 420				
9. PIPE LENGTH								
10. ZONE BOUNDAR	RY			L:101.5r	11			
11. WARD BOUNDA	RY					_		
<u>PIPE DIAMETER</u> (A) PIPE Ø 150				PIPE	COLORS	5		
(R) PIPE Ø 190								D
(C) PIPE Ø 250								
(D) PIPE Ø 300			•					
(E) PIPE Ø 350 (F) PIPE Ø 400								
(G) PIPE Ø 500								
(H) PIPE Ø 600								С
(I) PIPE Ø 800 (J) PIPE Ø 1000								
3 12.02.14			PER BUIDCO DISCUSSIO		P.B.	MB		KS
2 20.01.14 1 13.01.14			PER BUIDCO DISCUSSION		P.B. P.B.	MB MB		KS KS
0 26.08.13			SION FOR APPROVAL		P.B.	MB		KS
REV. DATE		DE	SCRIPTION		DRN.	CHKD.	AI	PPD.
CLIENT: -	B	BIHAR U	JRBAN INFRASTRUC CORPORATION L			OPMEN	Г	
PROJECT: -	S	EWERA	AGE NETWORK & 22 HAJIPUR TO		TP PL	ANT FOI	R	
BIDDERS NAME: -								
DATE: - 26.08.13	DRAW	ING TITL	E: -					
DRAWN.:- P.B.	-		SEWERAGE NI				ON	
CHKD.:- M.B.		<u></u>	DRAWI		ZUNE	-111		D
APPD.:- A.K.S.	SCALE 1:1000	SHEET 1 OF 1	DRAW HJ/1051/SE	VING NO. W/CONS	ST./03	<b>,</b>		REV. 3



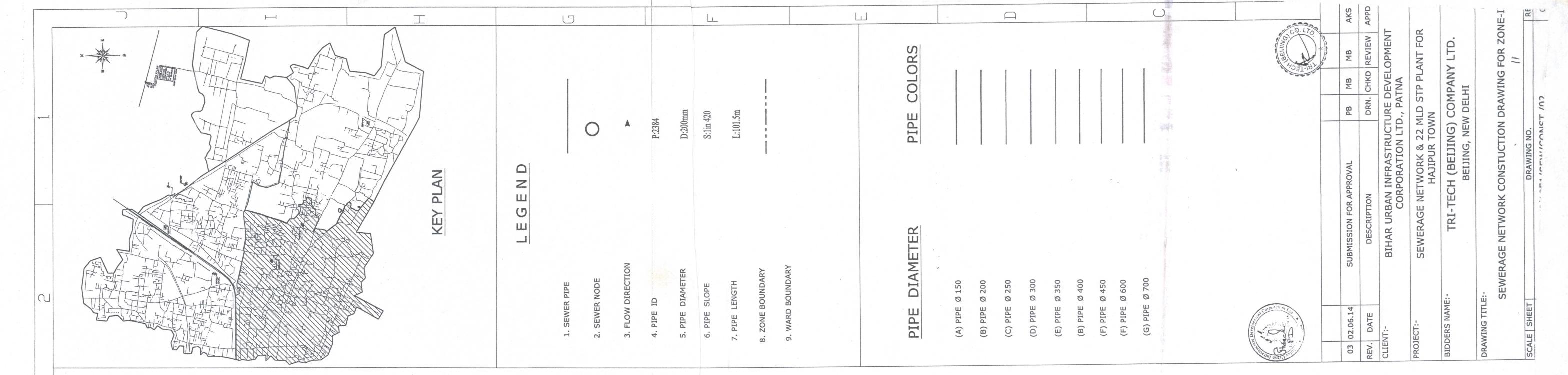
12	11	10	9

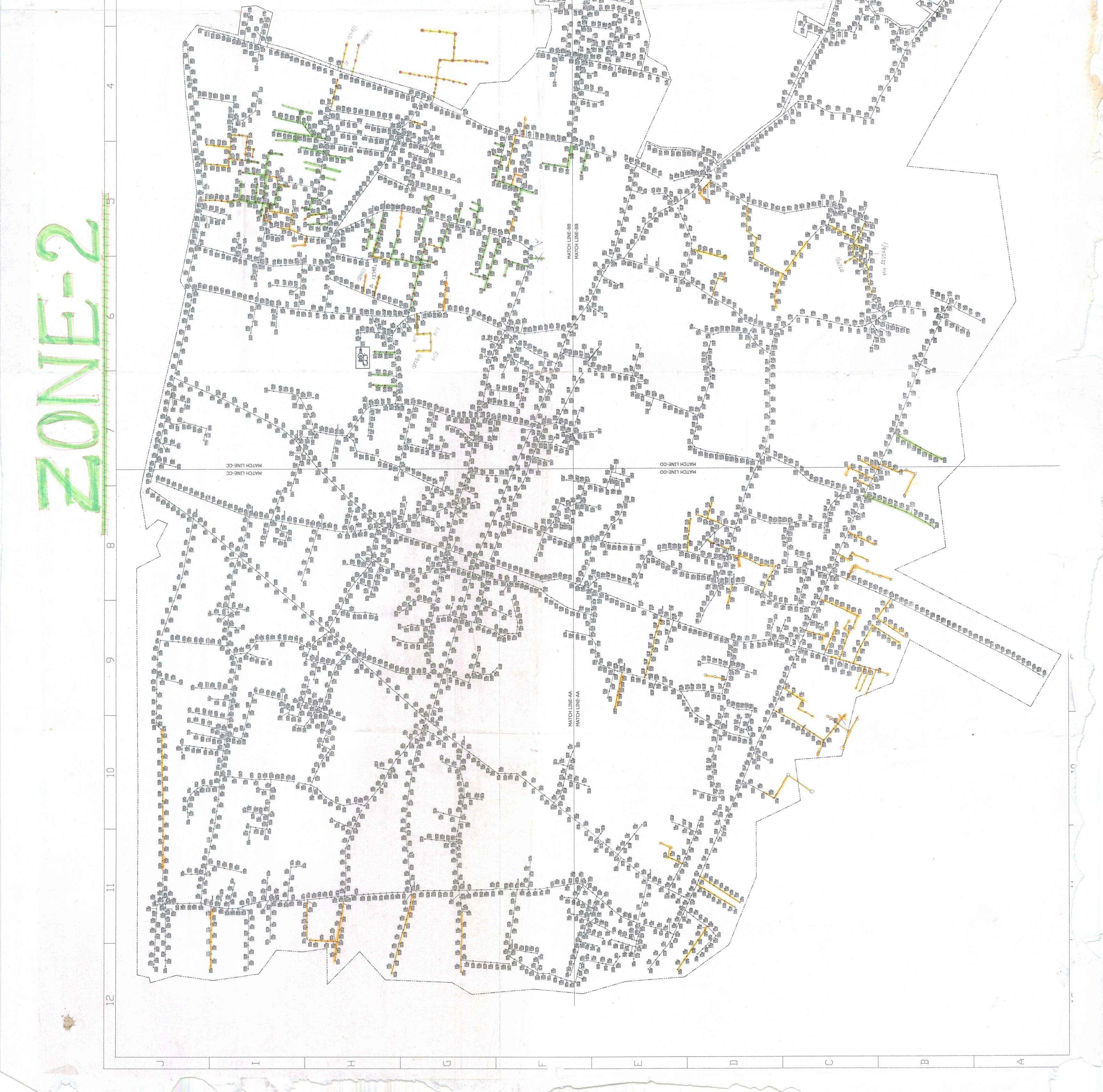






							.> □
	Ī	KEY PLAN	1				
	L	EGENE	)				
	VER PIPE						
2. NEV	V SEWER LINE			 \			
3. SEV	VER NODE		C	)			F
4. INS	ERT NODE						
5. FLO	W DIRECTION						
6. DR0	OP MANHOLE		-¢	)-			
7. PIP	E ID		P:23	84			
8. PIP	E DIAMETER		D:20	)0mm			
9. PIP	E SLOPE		S:1ii	n 420			E
10. PIP	E LENGTH		L:10	1.5m			
11. ZOI	NE BOUNDARY						
12. WA	RD BOUNDARY						
	DIAMETER		PIP	<u>PE COLC</u>	<u>DRS</u>		D
	E Ø 150 E Ø 200						
	E Ø 600						
	PE Ø 700 E Ø 1200						
		R BUIDCO COMM	IFNITC				C
03.10.13	ON DT.	. 26.08.13 R BUIDCO COMM		PKB	SHIV	SHIV	ARUN
05.09.13		. 26.08.13		РКВ	SHIV	SHIV	ARUN
27.02.13	COMMENTS	S ON DT. 26.02.1	3	MS	SBN	SHIV	RKS
01.02.13		R BUIDCO COM		PB	SBN	SHIV	A. DUT
28.12.12		R GFC APPROVA		PB	SBN	SHIV	A. DUT
DATE ENT: -		URBAN INFR CORPORA		URE I	) DEVEL	REVIEW OPMEN	
	SEWER	AGE NETWO			TP PLA	ANT FC	)R
DJECT: -		ΗΔΙ	IPUR TOV	VN			
DJECT: - DDERS NAME	<u>}</u>	11/15					


СТ

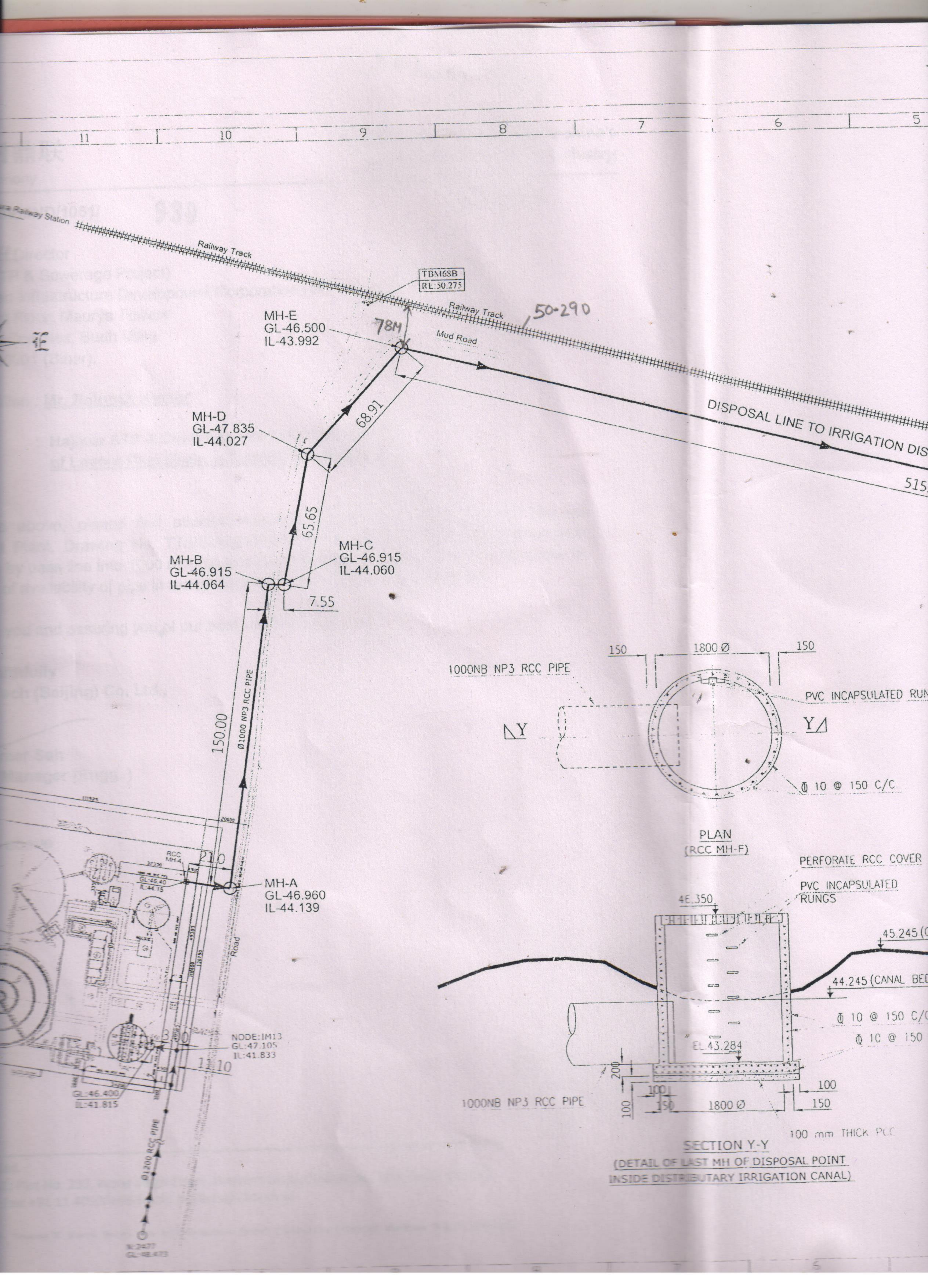


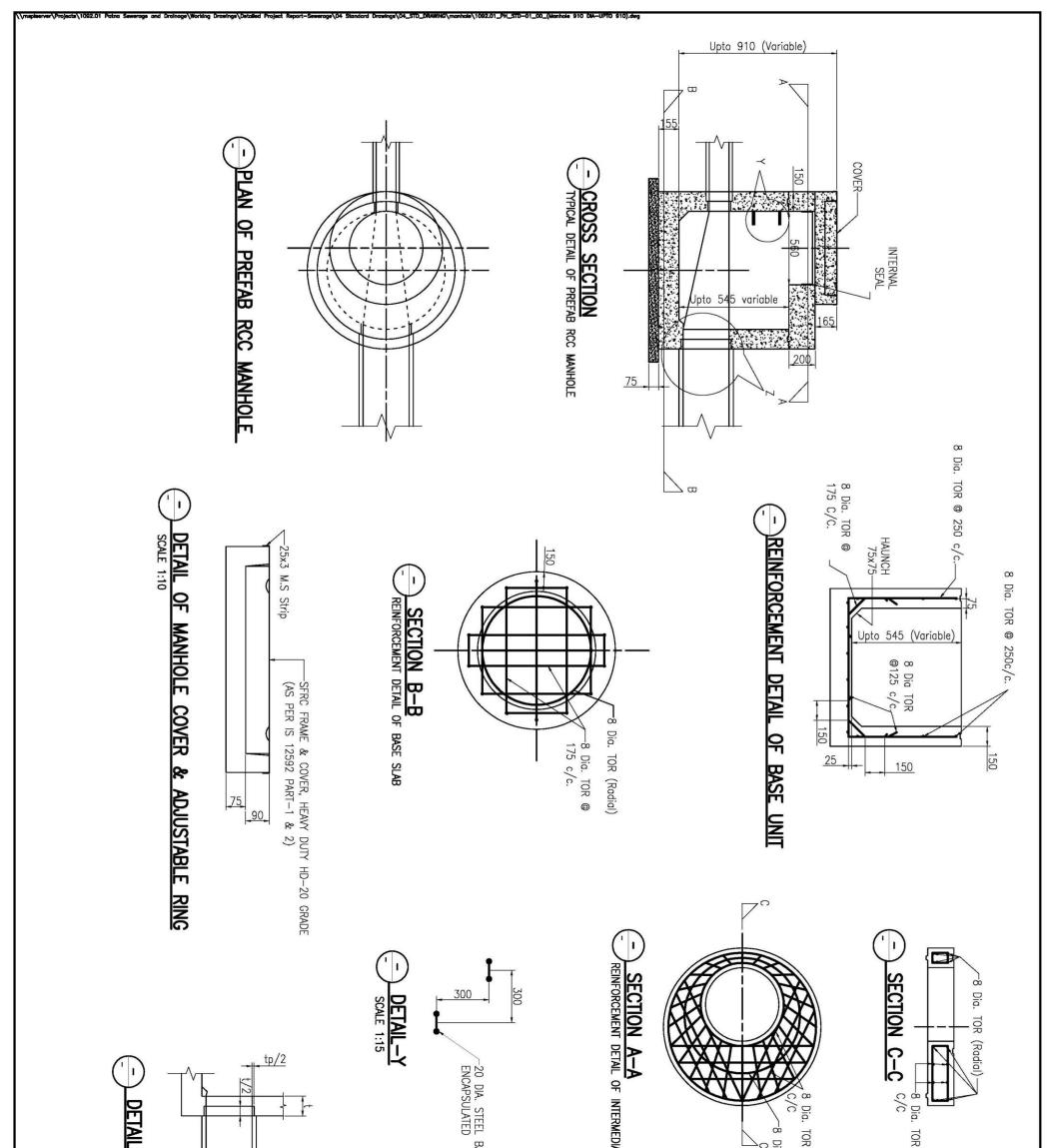

7	6	5	4

3	2			1			
STATUS: -							
TATUS (MARKED ON GROUND)	LOCATION	REFER	ENCE	REMARKS			
ST. LOCATION	NODE 2287	BUIDCO TENI (BUIDCO/SW0 -11/04 DT.02	G-STP/2010				
ND. LOCATION	DIGHI VILLAGE (NORTH SIDE OF RAILWAY CROS.)	APRIL'12 (AS HAJIPUR NAGA	SHOWN BY AR PARISHAD)				
RD. LOCATION	DIGHI VILLAGE (SOUTH SIDE OF RAILWAY CROS.)	PATRANK NO. 4874 DT. 14.0		MARKED ON DT. 30.11.12			
ST. LOCATION	NODE 2535	BUIDCO TENI (BUIDCO/SW0 -11/04 DT.02	G-STP/2010		Ι		
ND. LOCATION	ANWARPUR RAILWAY CRO- SSING (W-05)	BUIDCO/SIU-3 234 DT. 08.10	5/10/05/2012	NOC & COOR- DINATES STILL AWAITED			
ST. LOCATION	NODE 1593	BUIDCO TENI (BUIDCO/SWO) -11/04 DT.02	G-STP/2010				
ND. LOCATION	POKHRA MOHALLA (W-18)	BUIDCO/SIU- 234 DT. 08.10	3/10/03/2012	NOC & COOR- DINATES STILL AWAITED	H		
ST. LOCATION- AS PER DESIGN EQUIREMENT	RN COLLEGE (W-26)	BUIDCO/SIU-3 234 DT. 08.10	3/YO/03/2012 ).12				
ND. LOCATION	PWD LAND (OPP. CIRCUIT HOUSE)		ONFIRMED BY	NOC & COOR- DINATES STILL AWAITED			
ST. LOCATION- AS PER DESIGN EQUIREMENT	JARUHA (W-36)	BUIDCO/SIU- 234 DT. 08.10		NOC & COOR- DINATES STILL AWAITED	G		

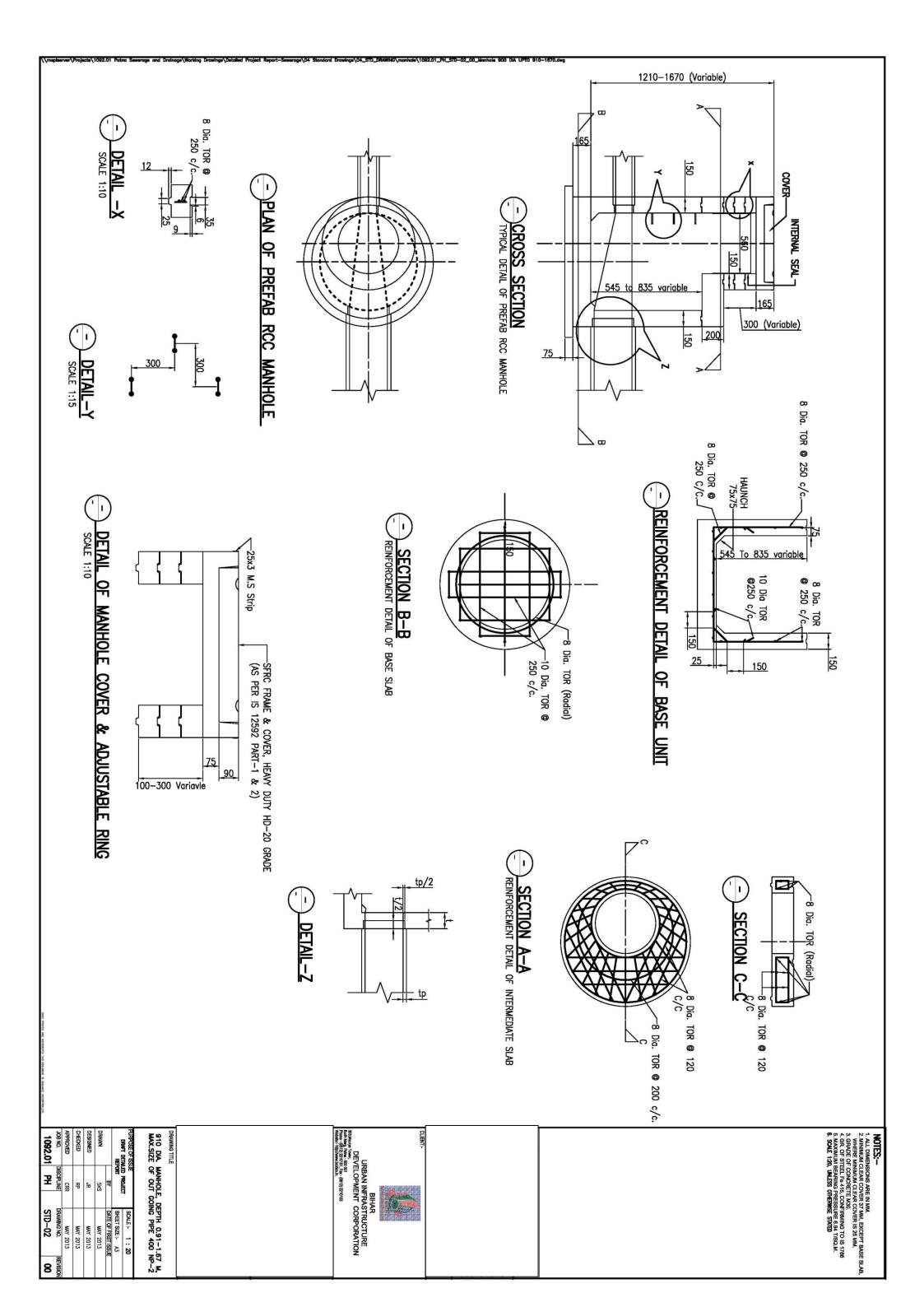
01	15.01.13	REVISED AS PER UPDATED LOCATIONS	MS	SHIV	A.DUTT								
00 30.11.12 MS SHIV A													
REV.	REV. DATE DESCRIPTION DRN. CHKD. AI												
CLIE	NT: -	BIHAR URBAN INFRASTRUCTURE DEV CORPORATION LTD., PATNA		PMENT	ר								
PROJ	PROJECT: - SEWERAGE NETWORK & 22 MLD STP PLANT FOR HAJIPUR TOWN												
BIDE	BIDDERS NAME: - TRI-TECH (BEIJING) COMPANY LTD. BEIJING, NEW DELHI												
DRAV	DRAWING TITLE: - INTERLINKING OF TPS (STP) WITH DIFFERENT IPS												
SCA	LE SHEET	DRAWING NO.			REV.								
1:71	50 1 OF 1	HJ/1051/SEW/INTERLINK/04A			01								

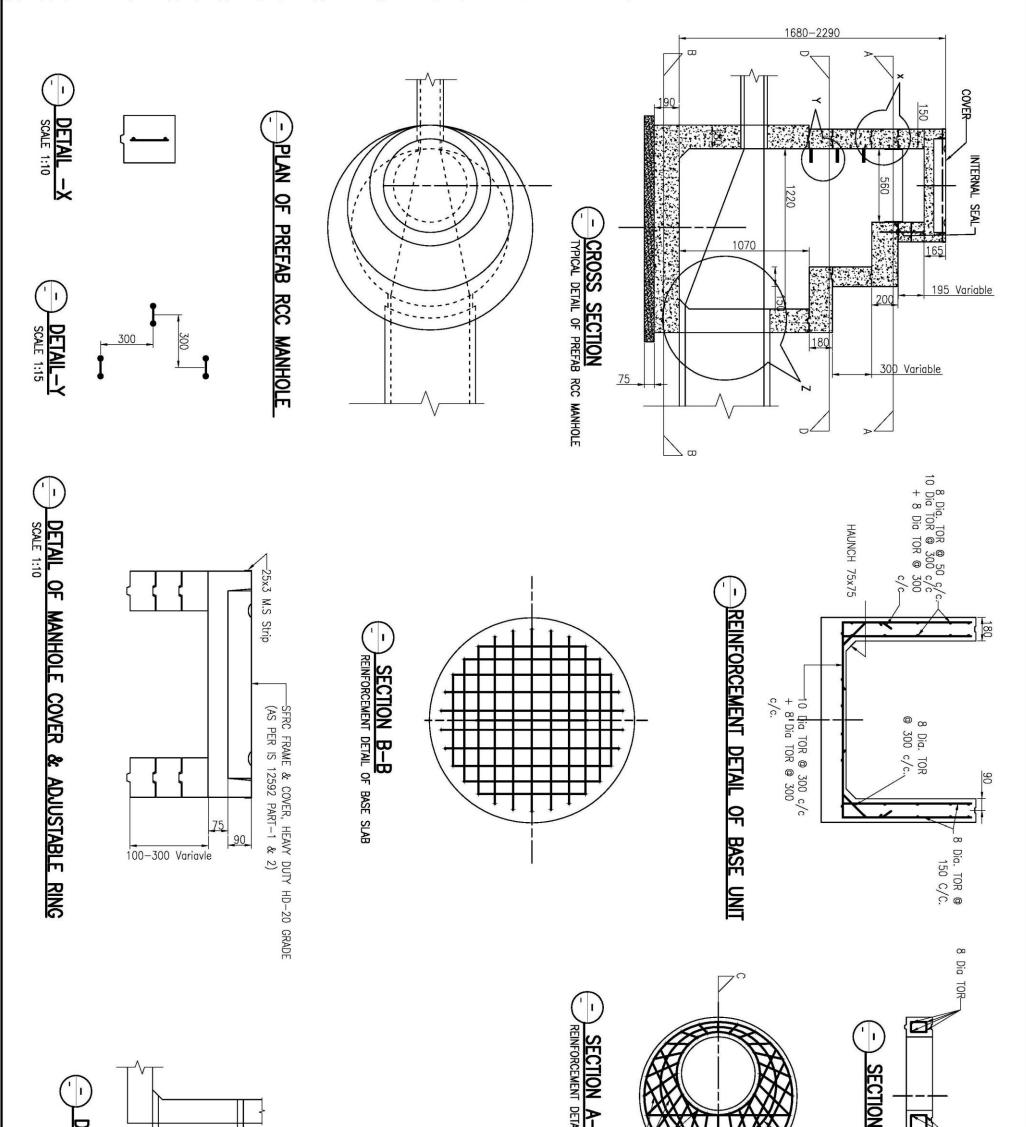




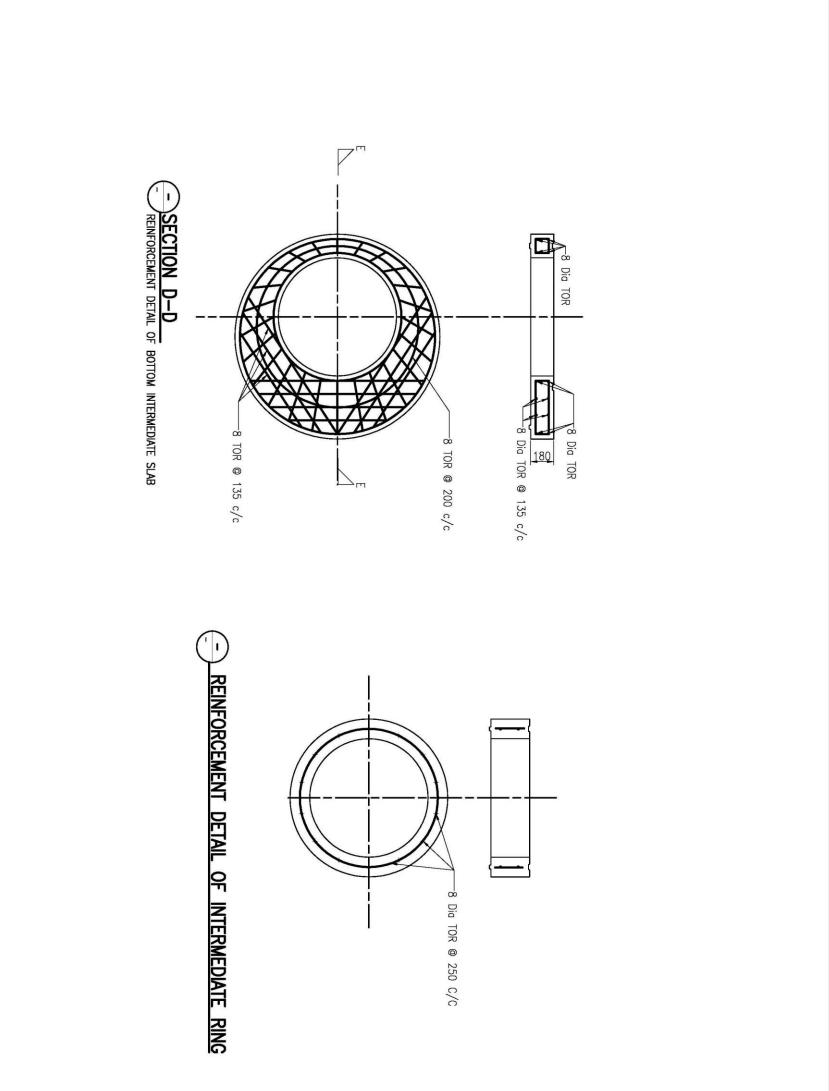




UTT 1:7150 1 OF 1 HJ/1051/SEW/0	DRAWING TITLE:- SEWERAGE NETW DRAWING	TRI-TECH鼎联 TRI-TECH (BEIJING) BEIJING, NEV	SEWERAGE NETWORK & 22 MLD HAJIPUR TOWN	BIHAR URBAN INFRASTRUCTU CORPORATION LTD	SUBMISSION FOR APPROVAL DESCRIPTION	SS	UAL SITE CONDITI	*** *** *** *** *** *** ****		PIPE DIAMETER	1. ZONE BOUNDARY	). PIPE LENGTH	9. PIPE SLOPE S	. PIPE ID	6. FLOW DIRECTION	4. INSERT NODE	2. NEW SEWER LINE 3. SEWER NODE	1. SEWER PIPE	KEY PLAN	Were the second se	A BONE A			The second secon		
CONST./04	FOR ZONE-IV	EW DELHI	LD STP PLANT FOR	JRE DEVELOPMENT	M.S. S.B.I. SHIV A.D. DRN. CHKE REVIEW AF	SH SH	P.B. S.EN. SHIV R.K			PIPE COLORS		::101.5m	D:200mm S:1in 420	9:2384								The second	NE 5	AGE-10:0 AGE	AU FR	





\$} \$} 1111]		Stint 200 Grad 50 Grad 50 G	D22000m P22553 D22000m P22553 D1244,310 D1244,310 D1244,310 D1244,310 D1244,310 D1244,310 D1244,310 D1244,310 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D12551 D125	
		Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzon Stinzo	S G (145,142) (447,710 (447,710 (447,710 (447,710 (447,710 (447,710 (447,710 (447,710 (447,710 (447,710 (447,710 (447,710 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512 (447,512) (447,512 (447,512) (447,512 (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (447,512) (44	
ROJECT:- IDDERS NAME:- NALE SHEET 1000 1 OF 1	PIPE DIAMETE         (A) PIPE Ø 15(         (A) PIPE Ø 15(         (B) PIPE Ø 200         (F) PIPE Ø 200         (G) PIPE Ø 200         (G) PIPE Ø 200         (I) PIPE Ø 200         (I) PIPE Ø 200         (I) PIPE Ø 120         5         03.10.13         REV         3         2       01.02.13         REVIS         1       28.12.12         NEV.         DATE	<ol> <li>NEW SEW</li> <li>SEWER NG</li> <li>SEWER NG</li> <li>FLOW DIR</li> <li>FLOW DIR</li> <li>FLOW DIR</li> <li>PIPE ID</li> <li>PIPE SLOP</li> <li>PIPE LENG</li> <li>ZONE BOUI</li> </ol>	1. SEWER PI	






	BAR PLASTIC	DIATE SLAB	OR @ 120 Dia. TOR @ 200 c/c.	DR © 140
MAWING TITLE           STUE TO DIA. MANHOLE, DEPTH UPTO 0.91 M, MAX.SIZE OF OUT GOING PIPE 350 NP-2           PURPOSE OF ISSUE REPORT           SCUE :- 1 : 20 PHET SEE REPORT           BY COING PIPE 350 NP-2           PURPOSE OF ISSUE REPORT           SCUE :- 1 : 20 PHET SEE REPORT           BY MAT 2013 CHECKED           DRAWN 2013 CHECKED           MAY 2013 CHECKED           MAY 2013 CHECKED           MAY 2013 CHECKED           MAY 2013 CHECKED           OPAWING IN. PH         STD-01         QO	CLENT:- BIHAR URBAN INFRASTRUCTURE DEVELOPMENT CORPORATION			NOTES: 1. ALL DIMENSIONS ARE IN MM. 2. MINIMUM CLEAR COVER 37 MM. EXCEPT BASE SLAB, WHERE MINIMUM CLEAR COVER IS 25 MM. 3. GRADE OF CONCRETE M30. 4. GR. OF STEEL Fa 415, COVERNING TO IS 1788 5. MAXIMUM BEARING PRESSURE 6.54 T/SOLM. 6. SOAF 1:20, UNLESS OTHERWISE STATED

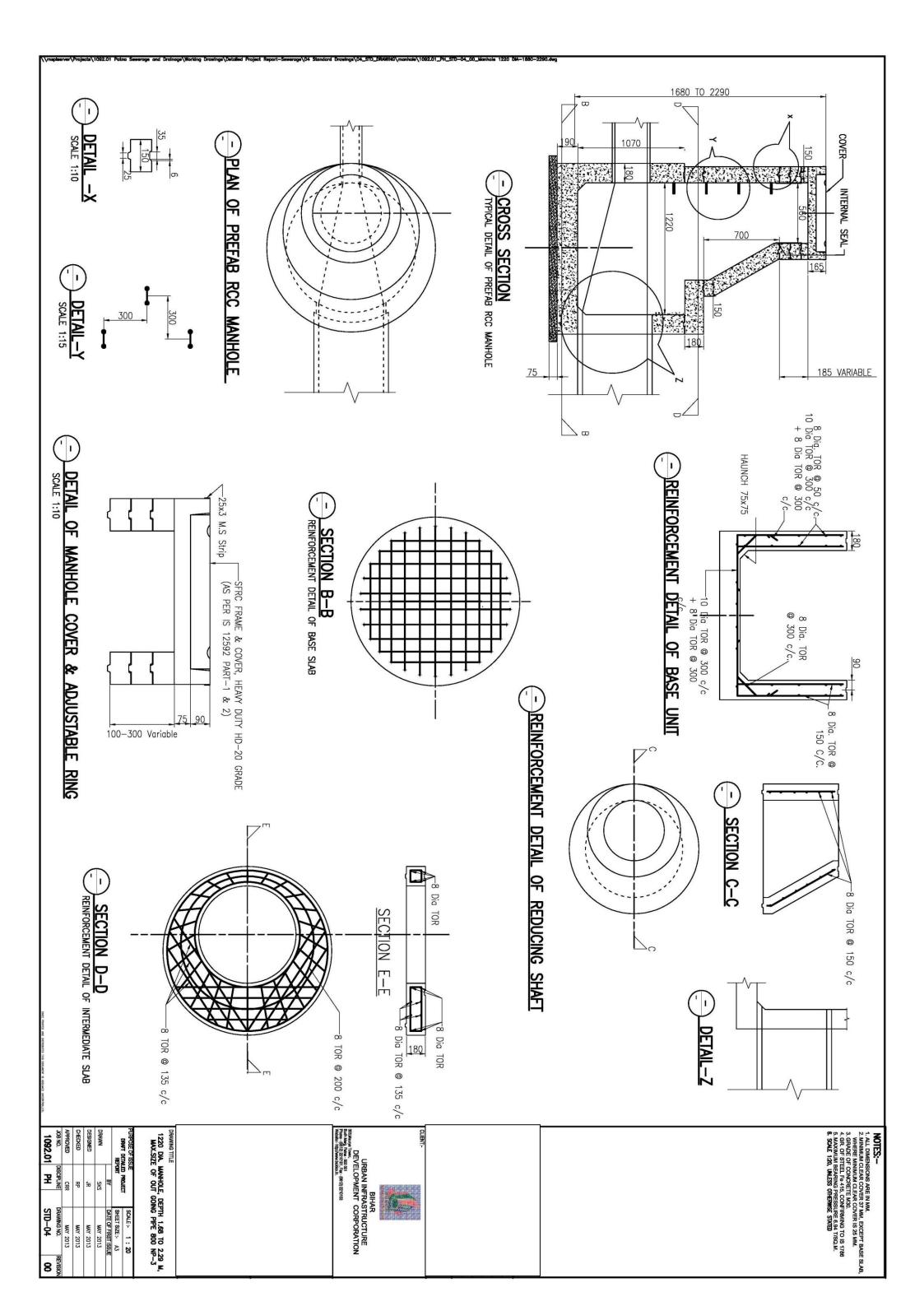


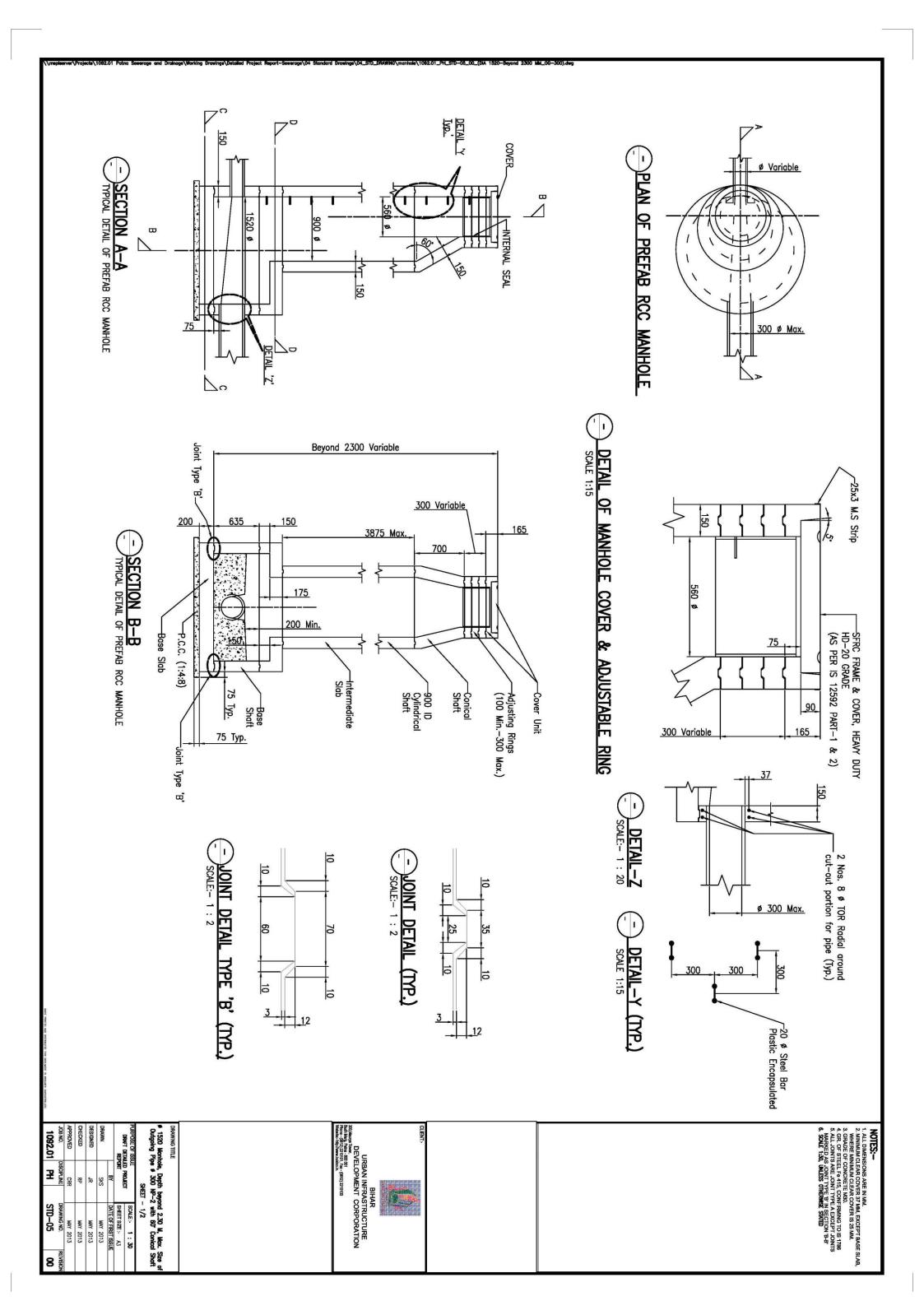


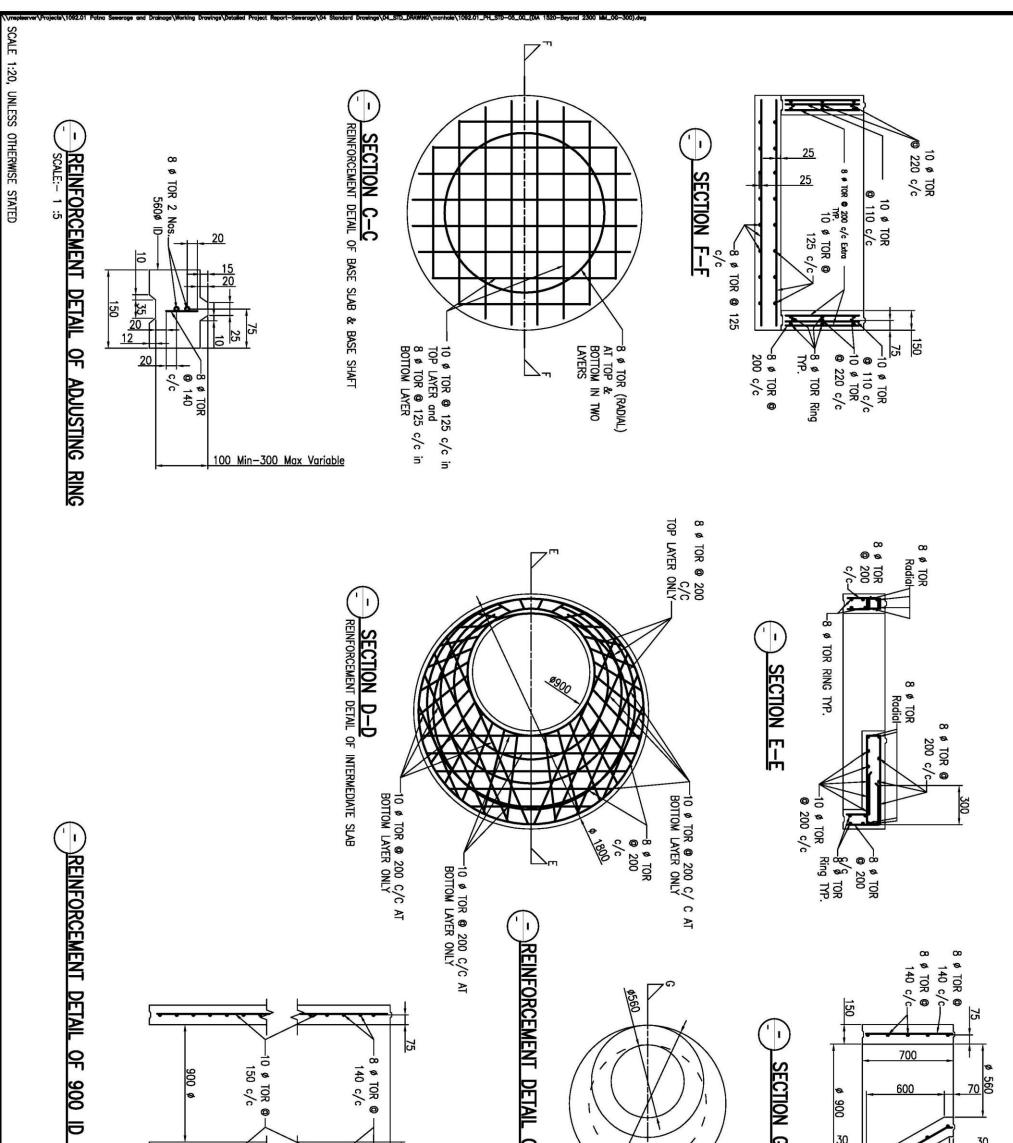
	TAIL OF INTERMEDIATE SLAB	B Dia TOR @ 200	B Dia TOR C-C B Dia TOR @ 135 c/c C/c C/c
BIHAR BIHAR URBAN INFRASTRUCTURE DEVELOPMENT CORPORATION Network Based Based Based DRAWNG TITLE 1220 DIA, MANHOLE, DEPTH UPTO 1.68 MAX.SIZE OF OUT COING PIPE 600 NP SHET - 1/2 PUPPOSE OF ISSUE DRAWN SKET - 1/2 PUPPOSE OF ISSUE SKET - 1/2 SKET - 1/2 S	CLEET:		NOTES:- 1. ALL DIMENSIONS ARE IN MA. 2. MINIMUM CLEAR COVER 37 MA 3. GRADE OF COVCRETE M30. 4. GR OF STELE 16 445, COVERTE M30. 5. MAXIMUM BEARING PRESSUR 6. SOLE 120, UNLES OTHERWISE 0. SOLE 120, UNLES OTHERWISE
AR STRUCTURE CORPORATION EEPTH UPTO 1.68 M, NG PIPE 600 NP-3 - 1/2 SKLE: 1:20 SKLE: 1:20			VEEN MM. EVER 37 MM. EXCEPT BASE SLAB, JEPAR COVER IS 26 MM. 15. COVERINING TO IS 1786 3 PRESSURE 6.54 TIRG.M. 10 THERWS: STATED



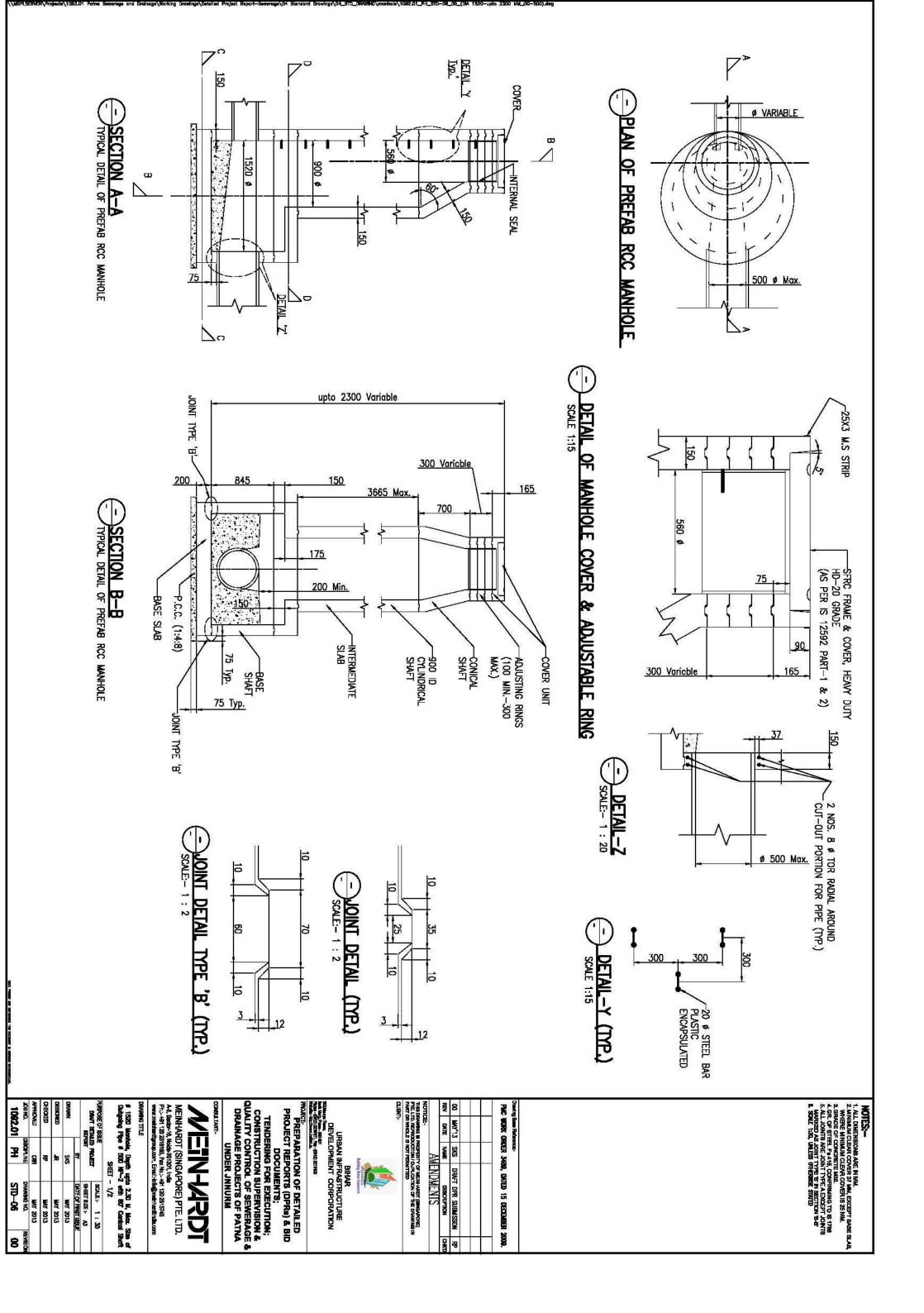
hole\1092.01_PH_STD=03_00_Manhole 1220 DM=UPTO 1680.dw

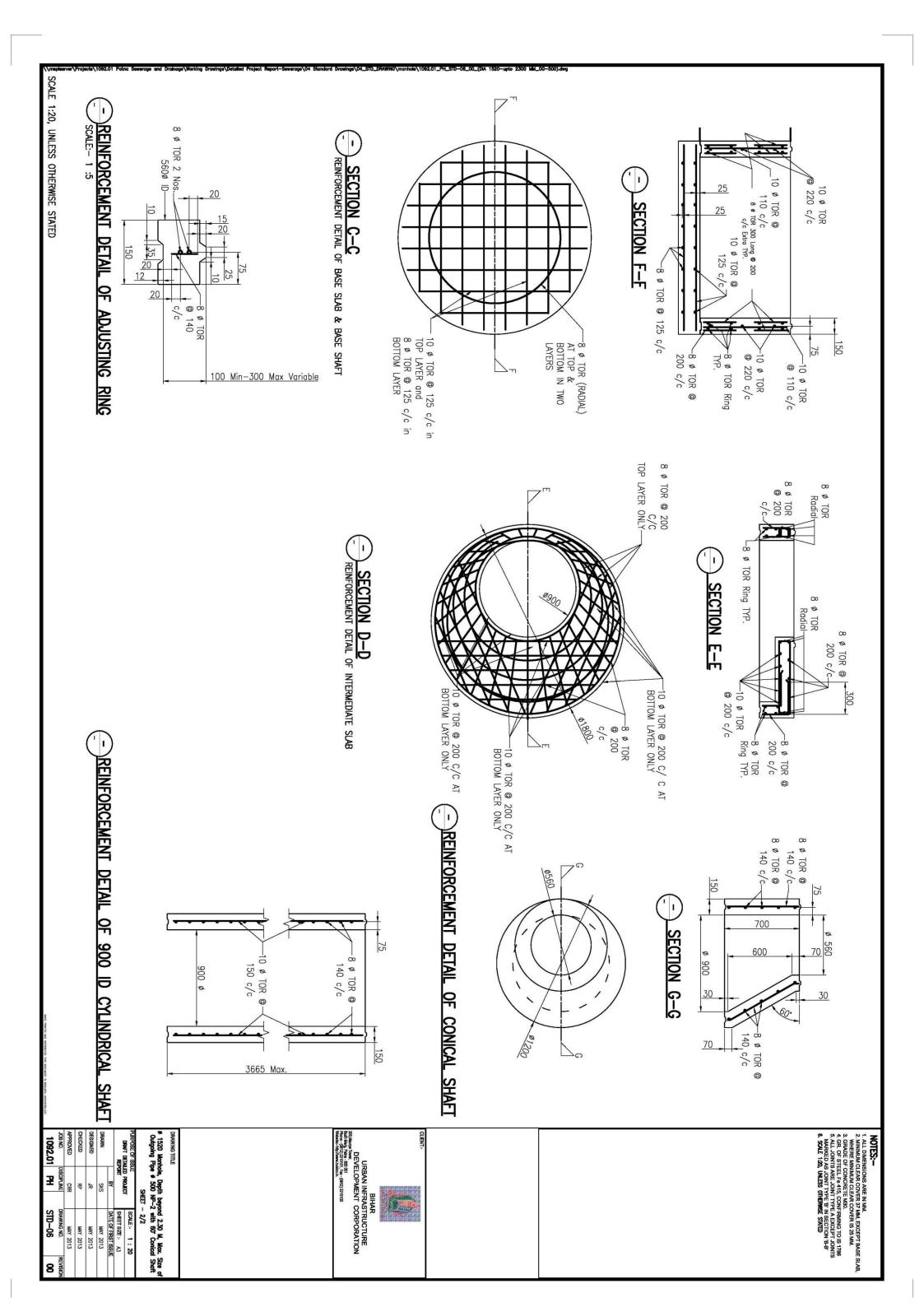

age\04

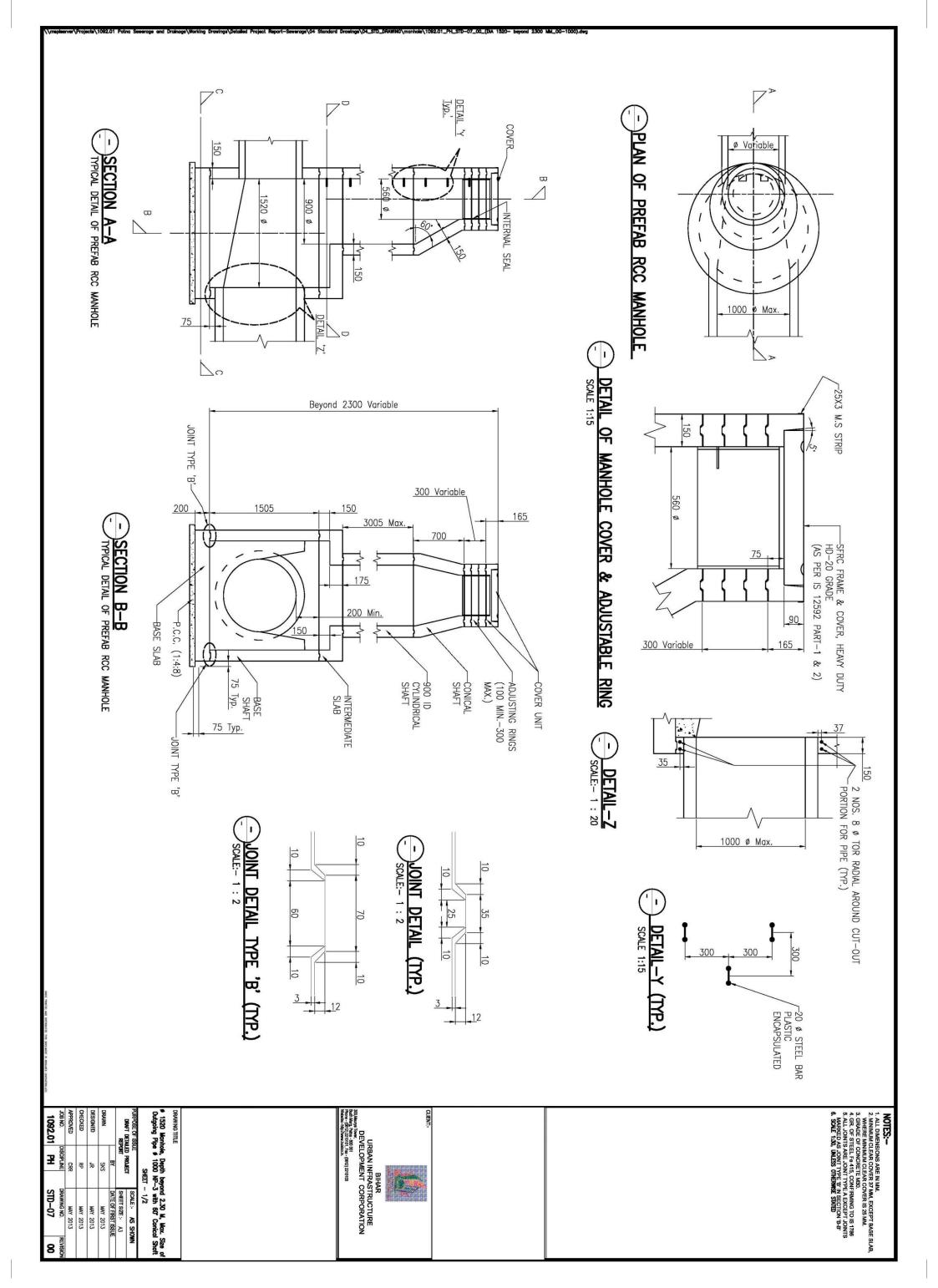

ngs\04_STD_D

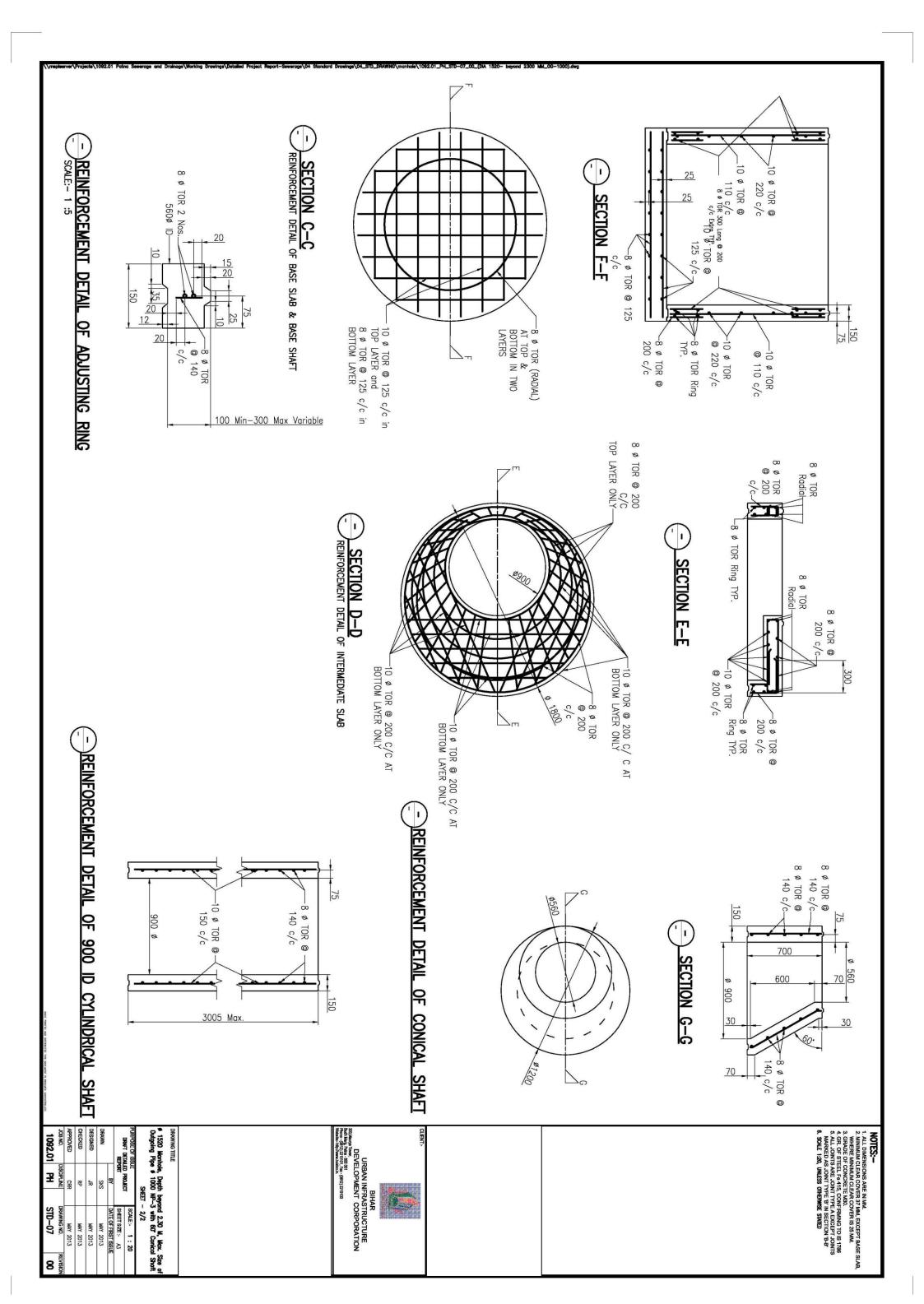

r\Projects\1092.01 Patna Sew

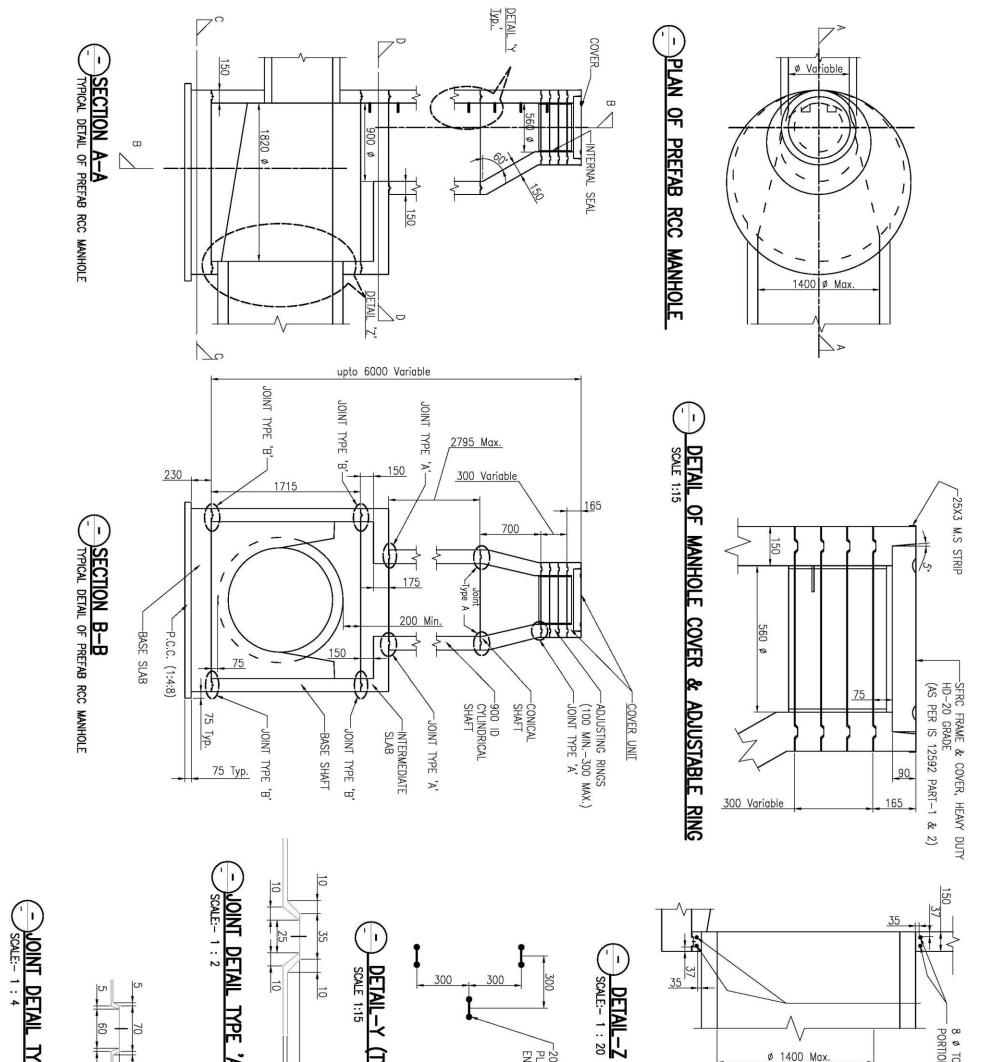
roge


AFY B KRAND		
DRAWING TITLE 1220 DIA, MANHOLE, DEPTH UP MAX.SIZE OF OUT GOING PIPE SHET - 2/2 PIRPOSE OF ISSUE DRAVIN BINUE DRAVIN DESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNED UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE UESIGNE	CLENT:- URBAN INFR DEVELOPMENT DEVELOPMENT Prov. 60 10 Prov. 60 10	NOTES: 1. ALL DIMENSIONS ARE IN 2. MINIMUM CLEAR COVER 3. GRADE OF CONSETE M 4. GR OF STEEL NORSTE 5. MAXIMUM BEARING PRE- 6. SOLE 1:20, UNLESS OTHER 8. SOLE 1:20, UNLESS OTHER 9. SOLE 1:2
DEPTH UPTO 1.68 M.           DING PIPE 600 NP-3           SCALE:         1:20           SHEET SIZE:         A3           MATE OF FIRST ISSUE           MAY 2013		N MM, EXCEPT BASE SLAB, R COMERIS 26 MM. 2004FRAINING TO IS 1788 ESSUPE 6.94 T/SG.M. EMMS: STATED

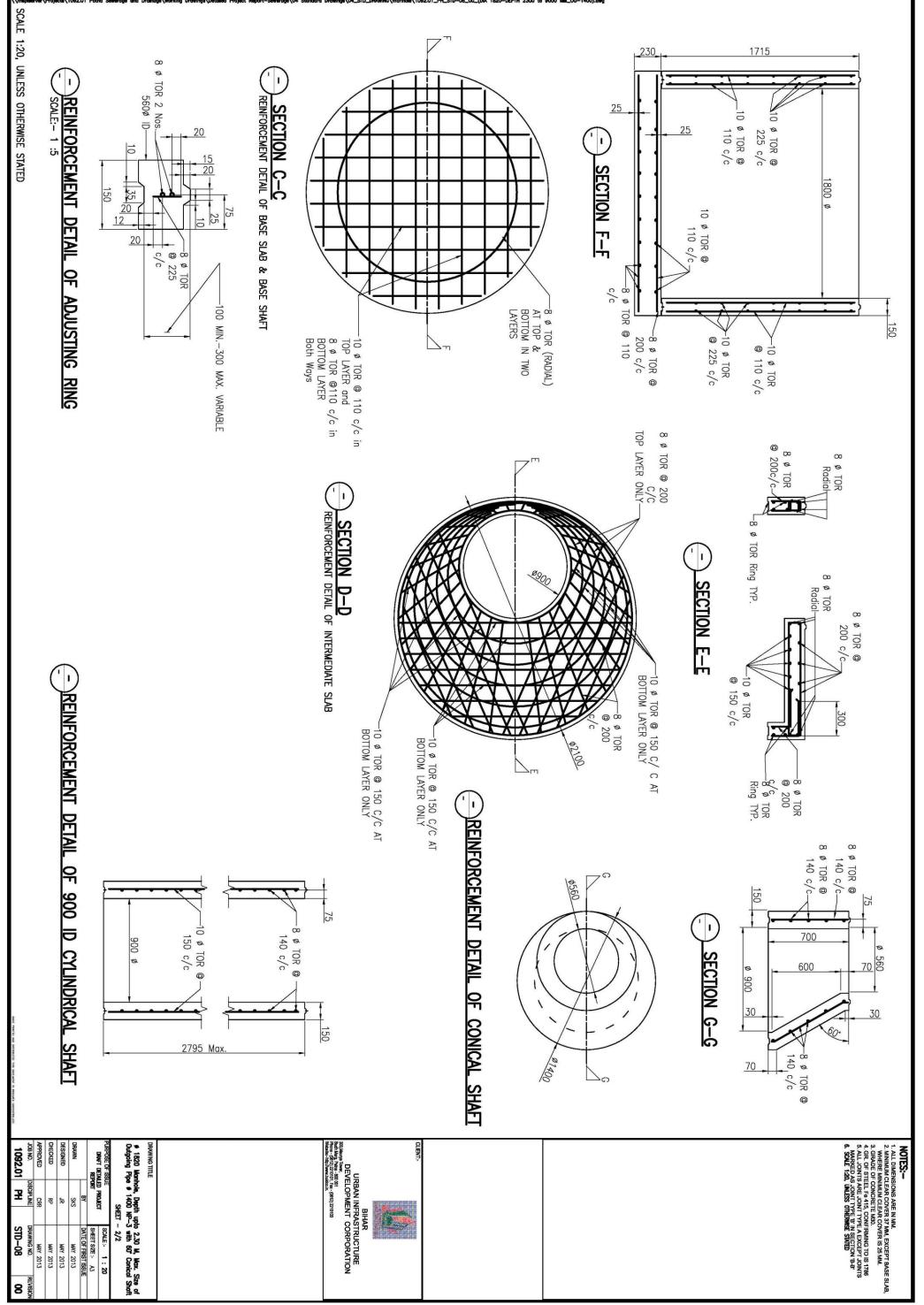


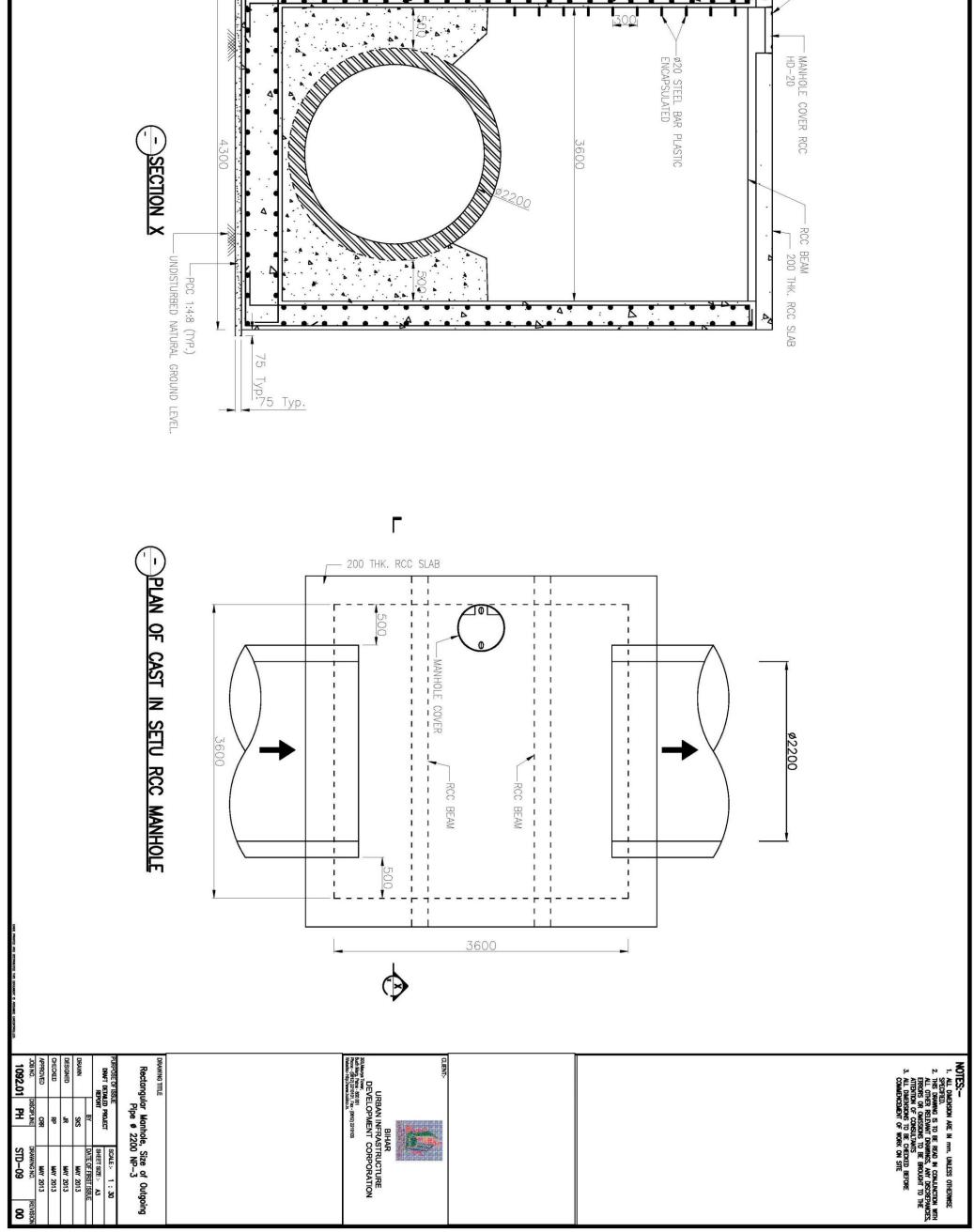



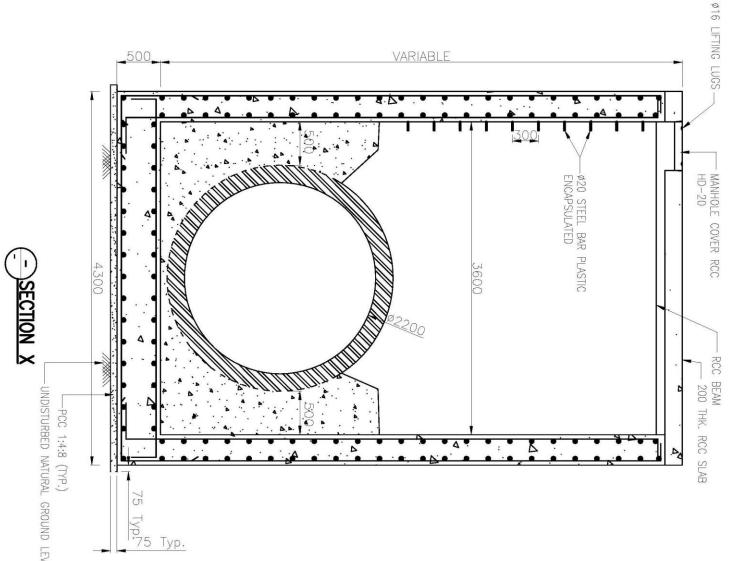





CYLINDRICAL SHAFT	3875 Max.	OF CONICAL SHAFT	etiana G	<u>G</u> G	30 140 140 140 107 ©
Drawnike TITLE       Drawnike TITLE       SHEET - 2/2       SHEET - 2/2       PURPOSE OF ISSUE       BY       DATE OF FIRST ISSUE       DATE OF FIRST ISSUE       DATE OF FIRST ISSUE       DRAWN     SKS     MAY 2013       DESIGNED       OHECKED     RP     MAY 2013       OHECKED     RP     MAY 2013       OHECKED     RP     MAY 2013       CREWING WO.       TORMING WO.       REVISION       DISCIPLINE       DRAWING WO.       REVISION	CLENT: BIHAR URBAN INFRASTRUCTURE DEVELOPMENT CORPORATION Read State: State: Read State: State: Read State: State: Read State: State: Read State: State: Read State: State: Read State: State: State: Read State: St				NOTES:- 1. ALL DIMENSIONS ARE IN MM. 2. MINIMUM CLEAR COVER 37 MM. EXCEPT BASE SLAB, WHERE MINIMUM CLEAR COVER IS 25 MM. 3. GRADE OF CONCRETE M30, 4. GR OF STEEL FA 415, CONFIRMING TO IS 1786 5. ALL JOINTS A E-JOINT TYPE A EXCEPT JOINTS 5. ALL JOINTS ALE JOINT TYPE BY IN SECTION 'B-B' 6. SOLE 1:20, UNLESS OTHERWISE STATED

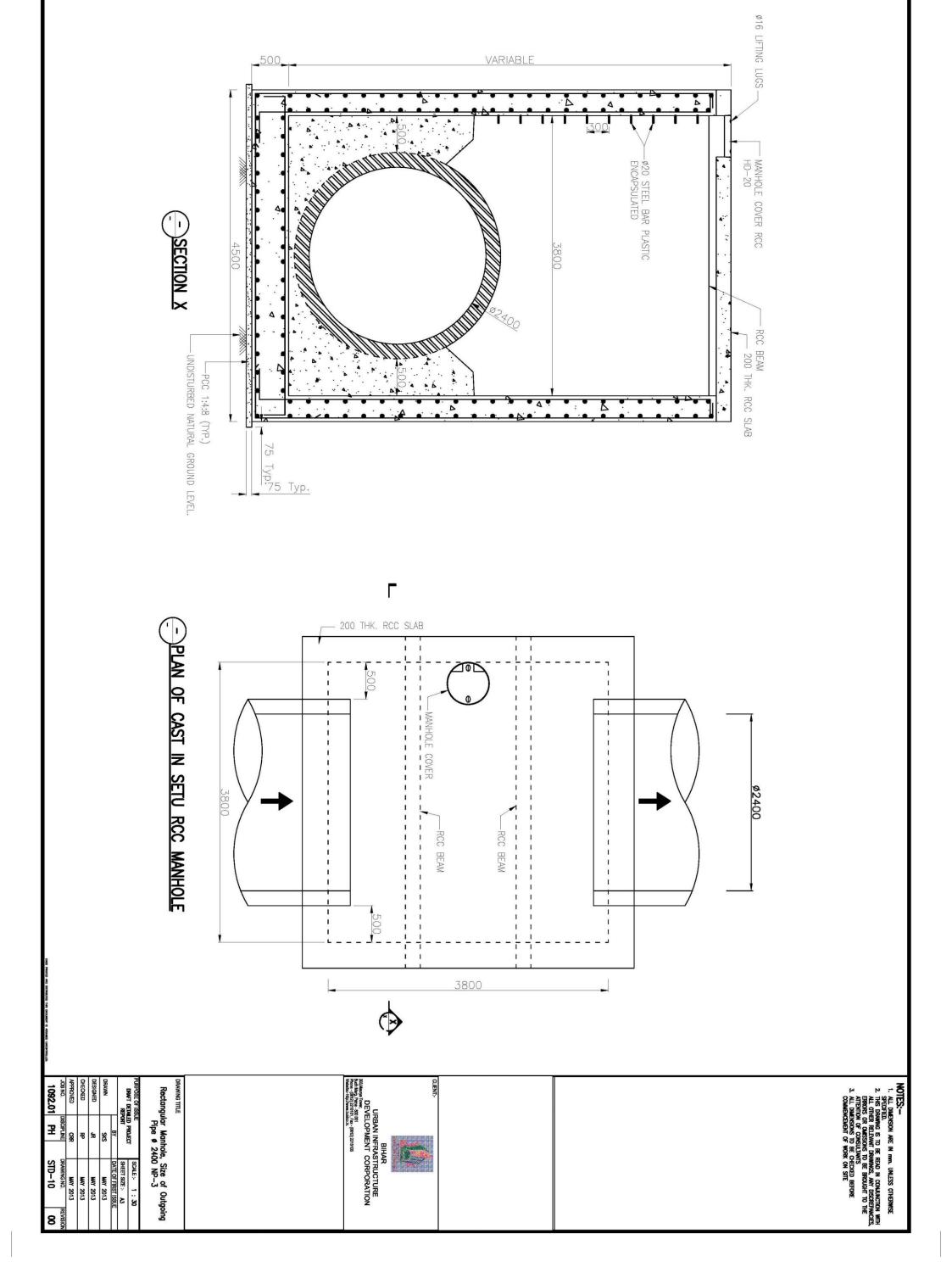




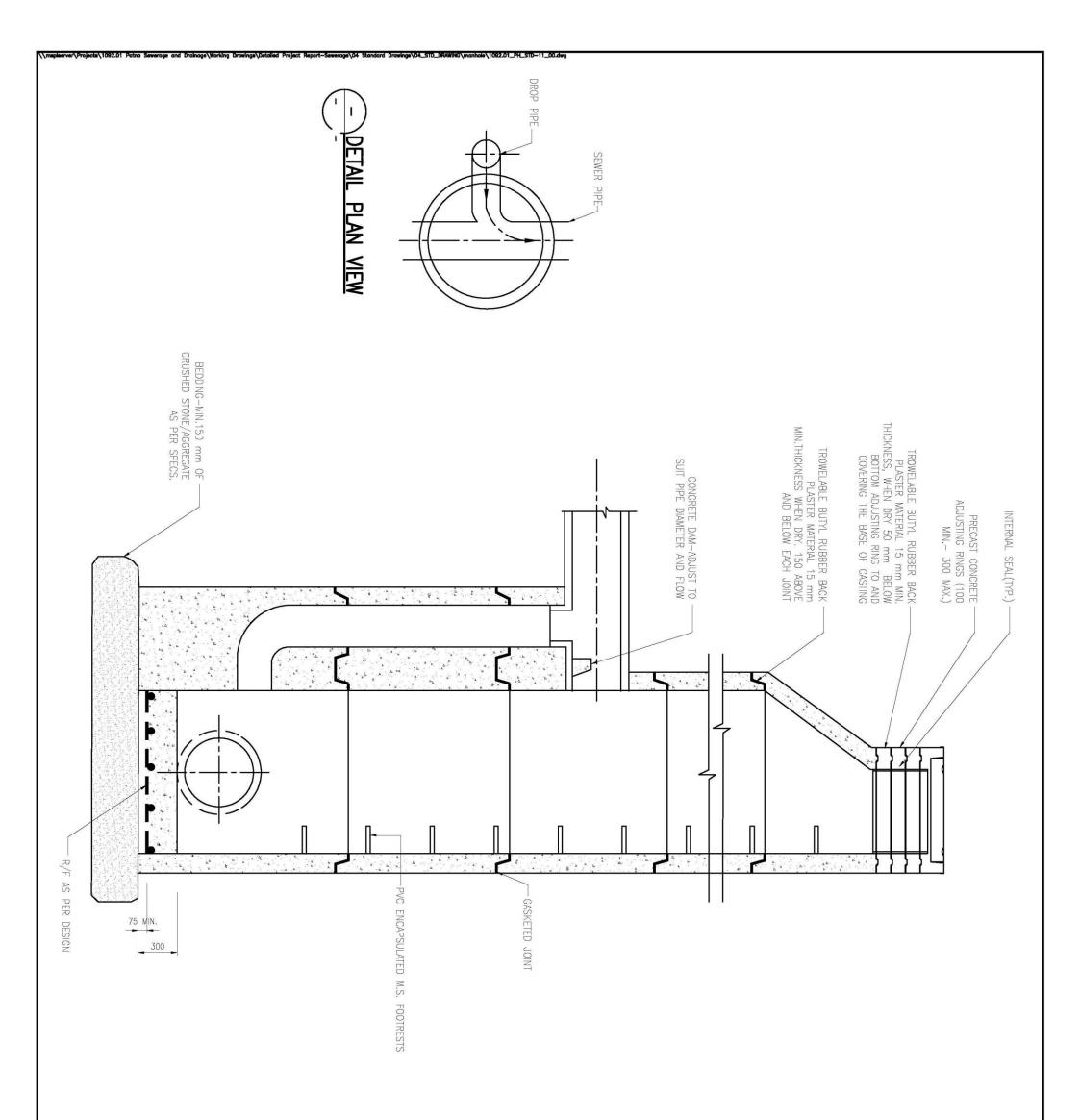



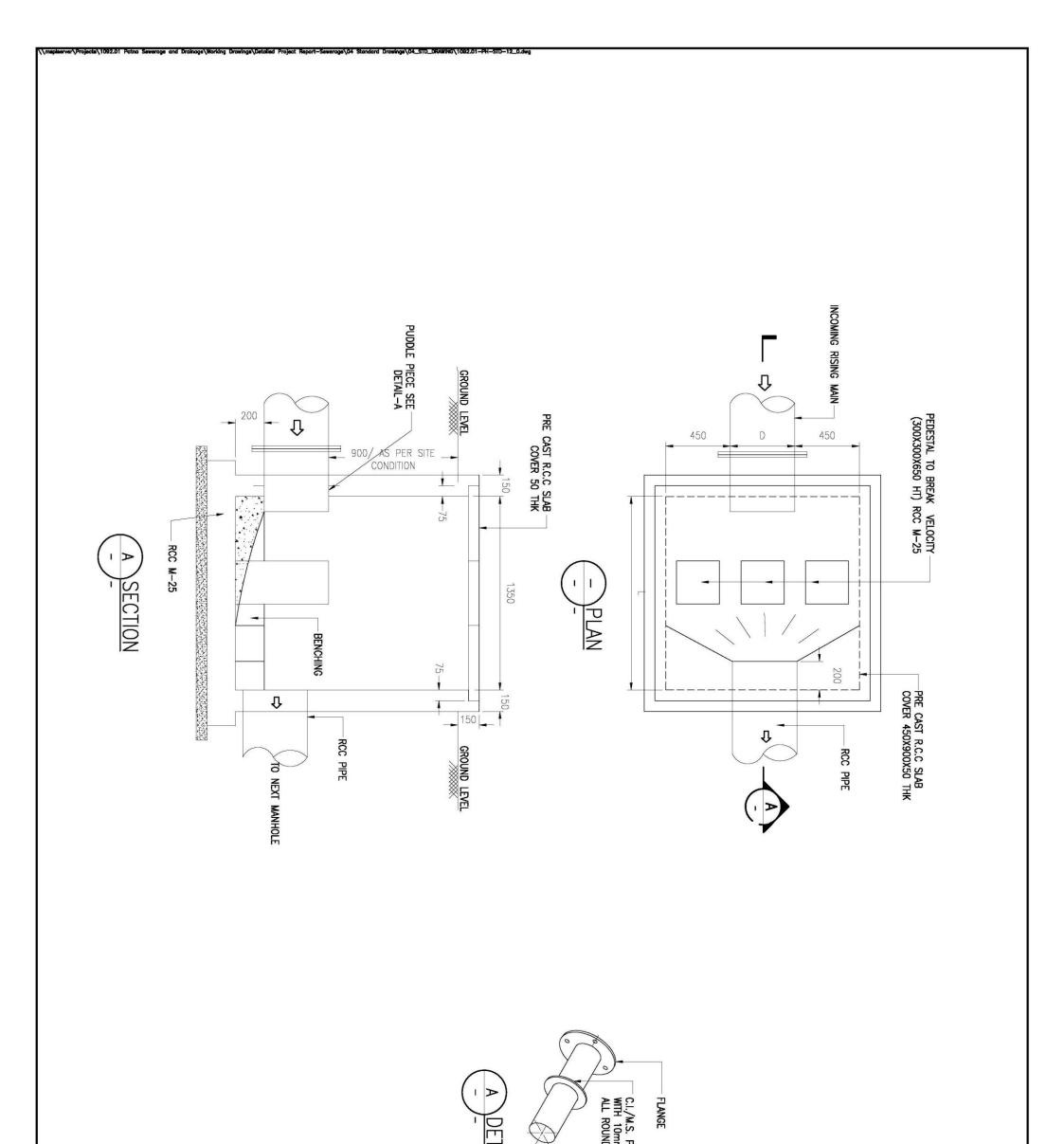




		20 ø STEEL BAR PLASTIC INCAPSULATED	∫Ø 1400 Max	TOR RADIAL AROUND CUT-OUT
DRAWING TITLE       I 1820 Marshols, Depth 2:00 to 9000 M, Max. Size of Outgoing Pipe # 1200 M-3 with GP Conical Shaft       SHEET - 1/2       SHEET - 1/2       BARMOSE RESULE       BARMOSE RESULE       BARMOSE RESULE       BARMOSE RESULE       BARMOSE RESULE       MAR 2013       BARMOSE RESULE       MAY 2013       DRAWING NO.       INFORM PIPE RESULE       BARMON DE COLSPANE"       MAY 2013       DESIGNED       RP       MAY 2013       CRR       MAY 2013       DESIGN NO.       IDESIGN NO.	IDE- DIDENTY OF MERHANDY (SINGAPORE) ITO: REPORTED INT: BIHAR URBAN INFRASTRUCTURE DEVELOPMENT CORPORATION PARTICIPATION INFRASTRUCTURE DEVELOPMENT CORPORATION PARTICIPATION INFORMATION			NOTES:- 1. ALL DIMENSIONS ARE IN MM. 2. MINIMUM CLEAR COVER 37 MM, EXCEPT BASE SLAB, WHERE MINIMUM CLEAR COVER IS 25 MM. 3. GRADE OF CONCRETE M30. 4. GR. OF STELE F6 45. CONFRMING TO IS 1786 5. ALL JOINT'S ARE JOINT TYPE A EXCEPT JOINTS 6. ALL JOINT'S ARE JOINT TYPE IN SECTION 'B-B' 6. SOLE 1:30, UNLESS OTHERWISE SINTED

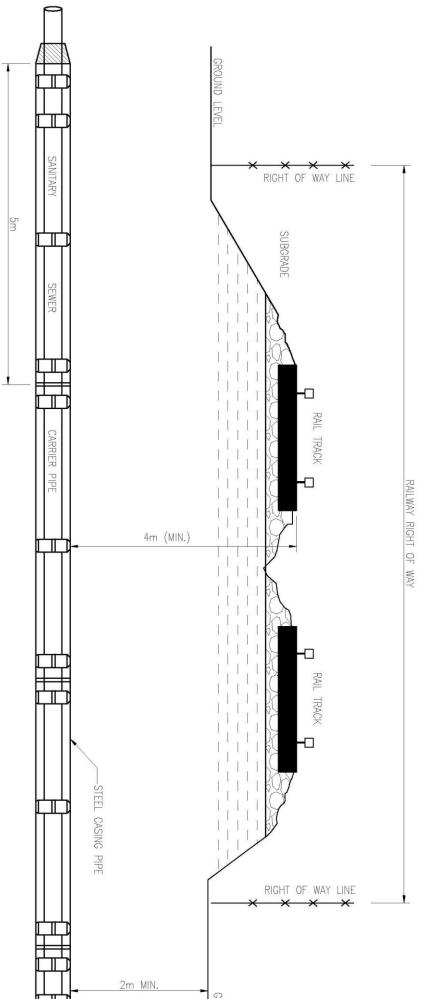






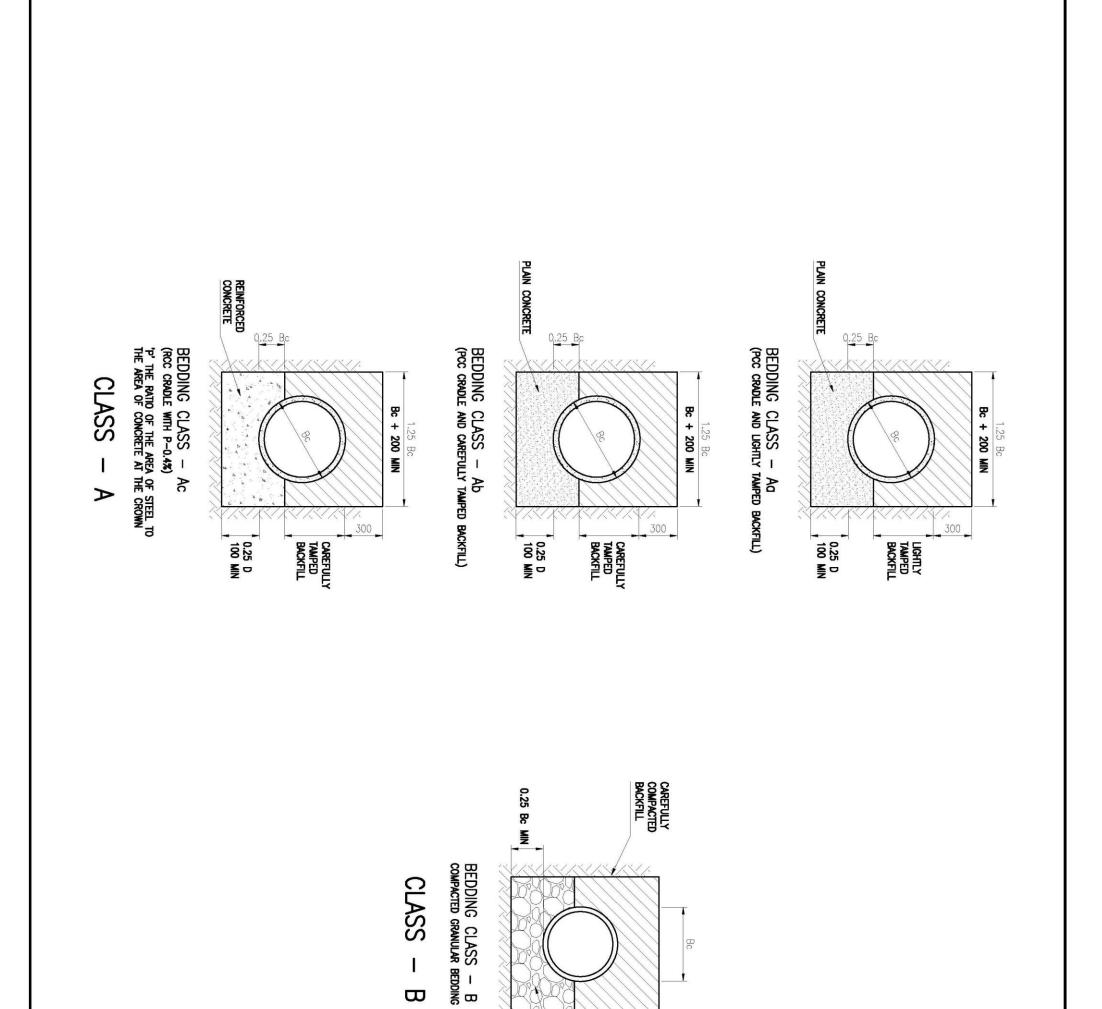


1092.01 PH STD-09




1092.01



NOTION & REPORT OF		
DRAWING TITLE       TYPPICAL DETAILS OF PREFAB RCC DROP MANHOLE       PURPOSE OF ISSUE BRAVAST REPORT ISSUESTINGE INFORMATION ISSUESTINGE DRAWN     SCALE: 1:30 DESINGE ISSUESTINGE ISSUESTINGE DRAWN       DRAWN     SCALE: 1:30 DESINGE ISSUESTINGE DRAWN       SALE: 1:30 DESINGE ISSUESTINGE DRAWN       DRAWN       ISSUESTINGE DRAWN       ISSUESTINGE DRAWN       ISSUESTINGE DRAWN       ISSUESTINGE DRAWN       ISSUESTINGE DRAWN       ISSUESTINGE DRAWN       ISSUESTINGE DRAWN       ISSUE DISTINGE       ISSUE DISTINGE       ISSUE DISTING       ISSUE DISTINGE       ISSUE DISTING       ISSUE DISTING </th <th>BIHAR URBAN INFRASTRUCTURE DEVELOPMENT CORPORATION Solvers Tex- Pro- Partice Transmitting Fac- (B12) Z0101 Water- Http://www.book.</th> <th><ol> <li>NOTES:-         <ol> <li>MUTES:-                 <ul> <li>Lambusion are in the ratio in comunicity with All other relevant orwands, any doesemades, errors of or consultants</li> <li>All diversions to be consent the attribution of consultants</li> <li>All diversions to be consent the commencement of work on site</li> <li>Commencement of work on site</li> <li>Commencement of work on site</li> </ul> </li> </ol></li> </ol></th>	BIHAR URBAN INFRASTRUCTURE DEVELOPMENT CORPORATION Solvers Tex- Pro- Partice Transmitting Fac- (B12) Z0101 Water- Http://www.book.	<ol> <li>NOTES:-         <ol> <li>MUTES:-                 <ul> <li>Lambusion are in the ratio in comunicity with All other relevant orwands, any doesemades, errors of or consultants</li> <li>All diversions to be consent the attribution of consultants</li> <li>All diversions to be consent the commencement of work on site</li> <li>Commencement of work on site</li> <li>Commencement of work on site</li> </ul> </li> </ol></li> </ol>




DECE FRANKE NO CERTINATE & SAME NO CERTINATE & SAME NO CERTINATE	DETAIL	Ř
PRAVING TITLE RISING MAIN DISCHARGE MANHOLE PURPOSE OF ISSUE MANHOLE PURPOSE OF ISSUE DRAWN SALE: 11: 25 DRAWN SALE: 11		NOTES:- 1. ALL DIALPSION ARE IN mm. UNLESS OTHERWISE 2. THIS DRAWING IS TO BE READ IN COMMUNICATION WITH ALL OTHER RELEVANT DRAWINGS, MAY DISCREPANCIES, ENDORS OF CONSULTANTS 3. ALL DIALPSISONS TO BE CONSULTANTS COMMENCEMENT OF WORK ON STE 2. COMMENCEMENT OF WORK ON STE

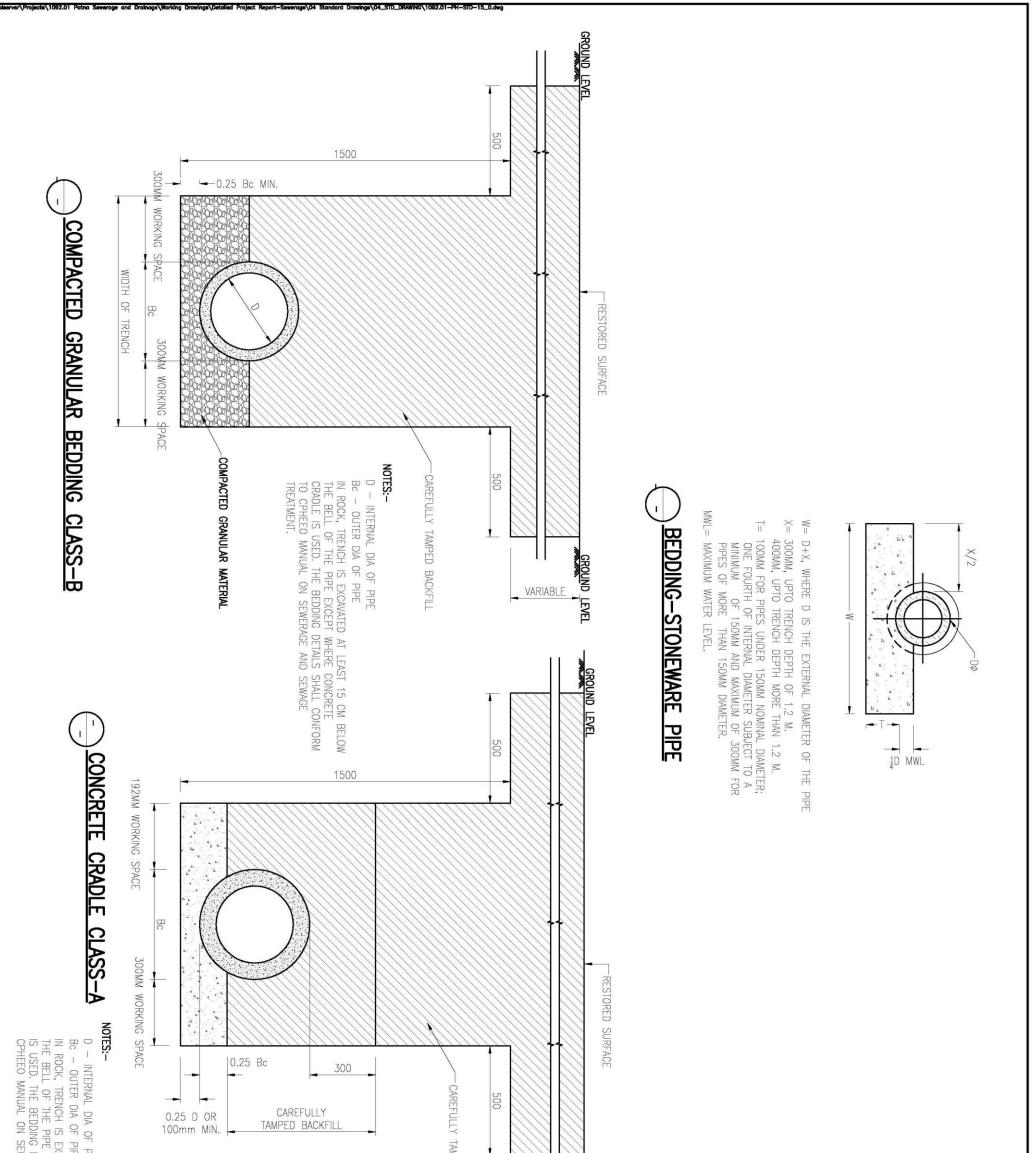


mapleever/Projects/1092.01 Patna Sewerage and Drainage/Working Drawings/Detailed Project Report-Sewerage/O4 Standard Drawings/O4_STD_DRAWING/1092.01-PH-STD-13_0.dwg

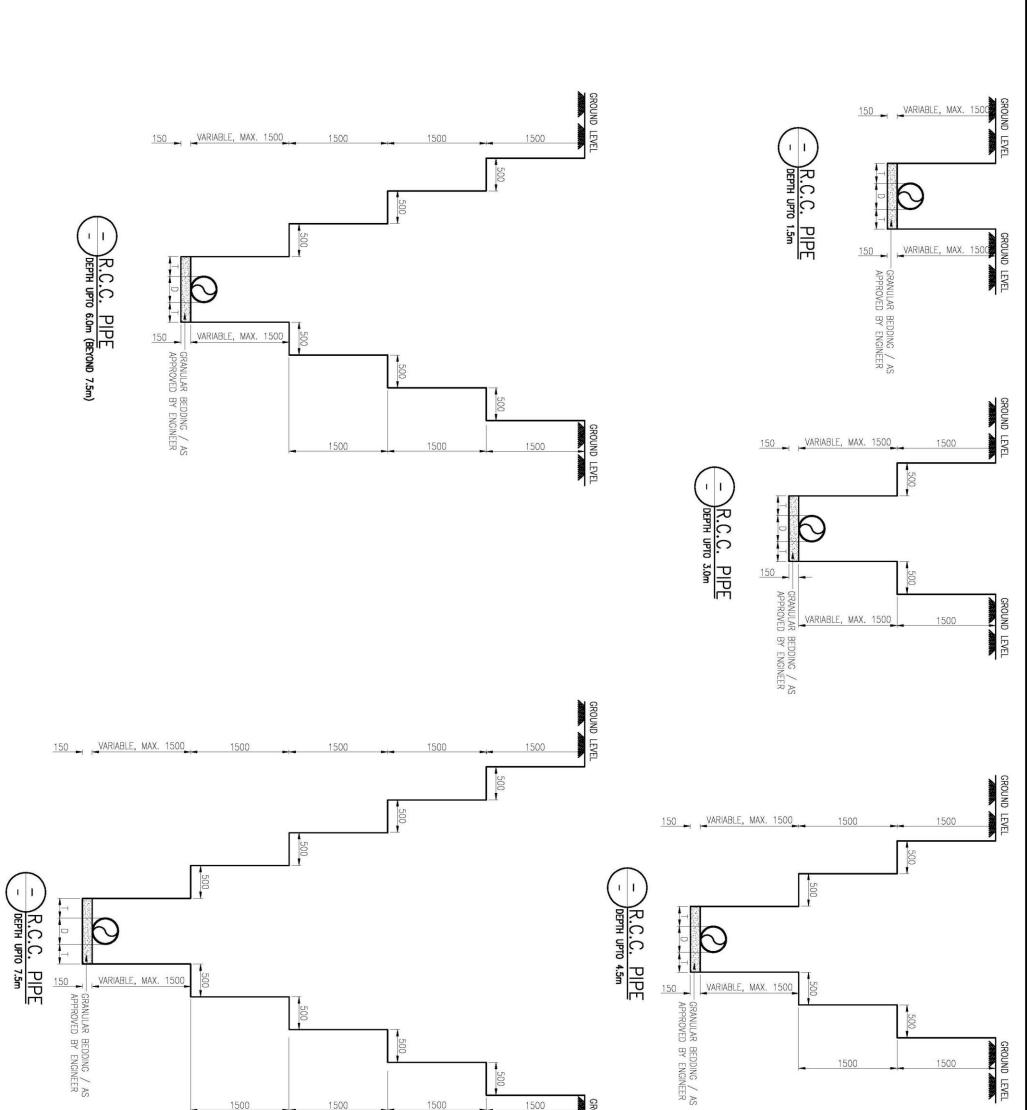
nge manta ang perganta ng dalang g asawa jugontalita		ROUND LEVEL		
DRAWING TITLE           SCHEMATIC OF RALL TRACK CROSSING           CROSSING           PURPOSE OF ISSUE DRAWN         SCALE - NTS BRAWN           BY DRAWN         SALE - NTS BRAWN           BY DRAWN         SALE - NTS BRAWN           BY DRAWN         SALE - NTS BREFORT           DRAWN         SALE - NTS BREFORT           DRAWN         SALE - NTS BREFORT           DRAWN         SALE - NTS BREFORT           DRAWN <th col<="" th=""><th>BIHAR URBAN INFRASTRUCTURE DEVELOPMENT CORPORATION Refer (58/12)20/07</th><th></th><th>NOTES:- 1. ALL DIMENSION ARE IN IMP. UNLESS OTHERWISE SPECTRED. 2. THIS DRAWING IS TO BE READ IN COMMUNITY ALL DIMENSIONER RELEAVED TO BREAD BETORE COMMENCIALENT OF WORK ON STRE COMMENCIALENT OF WORK ON STRE</th></th>	<th>BIHAR URBAN INFRASTRUCTURE DEVELOPMENT CORPORATION Refer (58/12)20/07</th> <th></th> <th>NOTES:- 1. ALL DIMENSION ARE IN IMP. UNLESS OTHERWISE SPECTRED. 2. THIS DRAWING IS TO BE READ IN COMMUNITY ALL DIMENSIONER RELEAVED TO BREAD BETORE COMMENCIALENT OF WORK ON STRE COMMENCIALENT OF WORK ON STRE</th>	BIHAR URBAN INFRASTRUCTURE DEVELOPMENT CORPORATION Refer (58/12)20/07		NOTES:- 1. ALL DIMENSION ARE IN IMP. UNLESS OTHERWISE SPECTRED. 2. THIS DRAWING IS TO BE READ IN COMMUNITY ALL DIMENSIONER RELEAVED TO BREAD BETORE COMMENCIALENT OF WORK ON STRE COMMENCIALENT OF WORK ON STRE



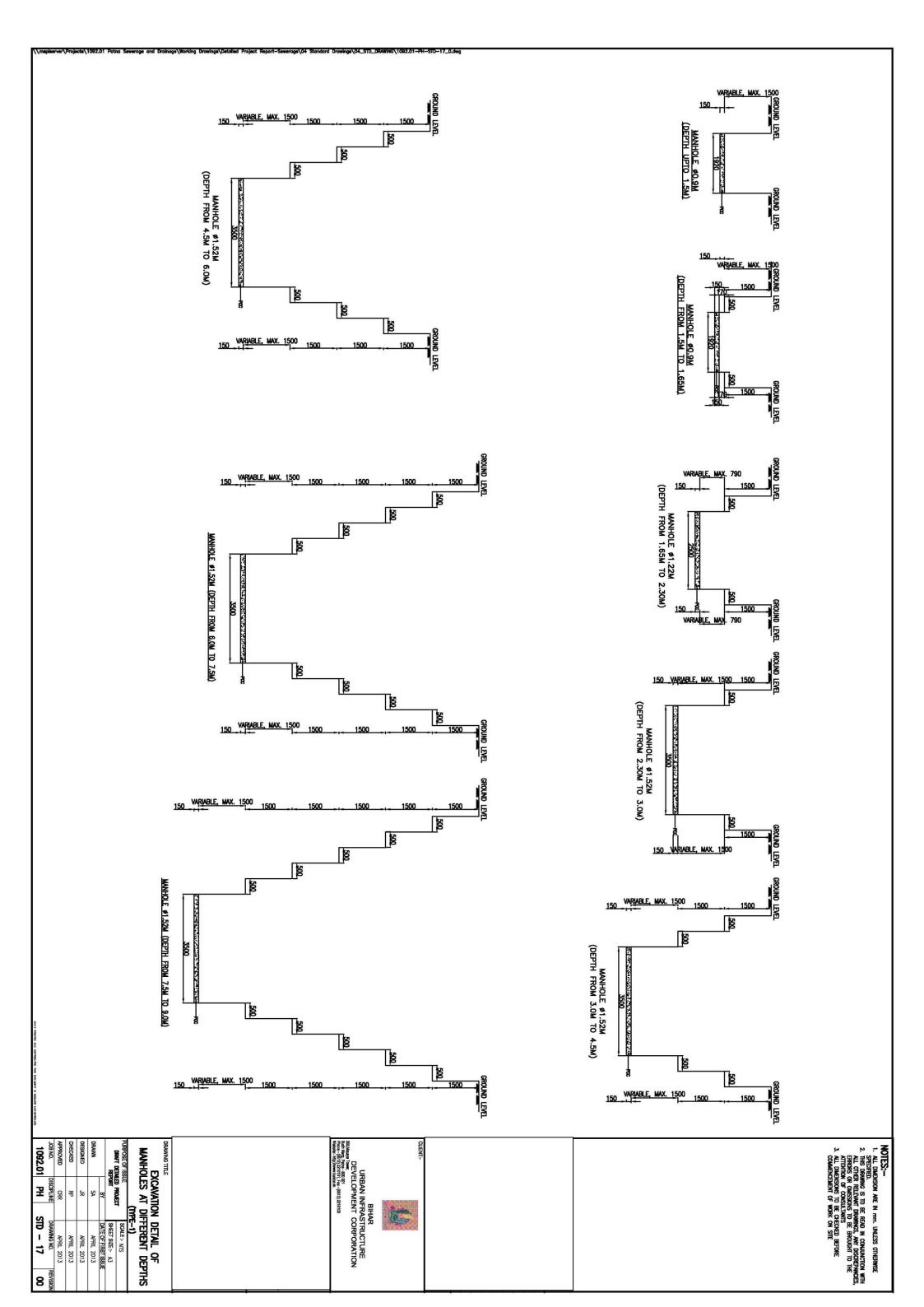
ndard Drawings\04_STD_DRAWING\1092.01-PH-STD-14_0.d 1092 0

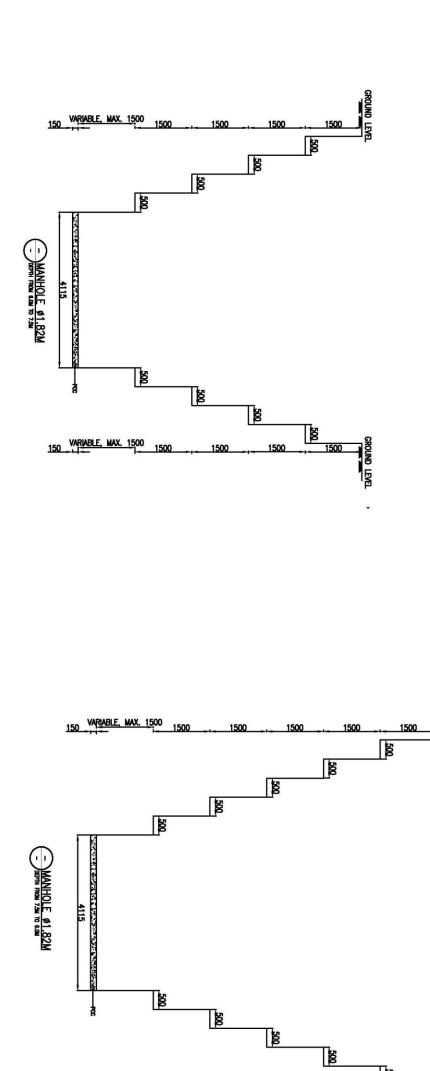

DRAWING TITLE TYPICAL DRAWING FOR DIFFERENT CLASSES OF BEDDING FOR SEWER IN TRENCHES PURPOSE OF ISSUE DIFFERENT CLASSES OF BEDDING FOR SEWER IN TRENCHES PURPOSE OF ISSUE DIFFERENT CLASSES OF BEDDING FOR SEWER IN TRENCHES PURPOSE OF ISSUE SAV DRAWING TITLE TRENCHES PURPOSE OF ISSUE SAV DRAWING FOR SEWER IN SAV DRAWING TITLE TRENCHES PURPOSE OF ISSUE SAV DRAWING FOR SEWER IN SAV DRAWING TITLE TRENCHES SAV DRAWING FOR SEWER IN SAV DRAWING TITLE TRENCHES SAV DRAWING FOR SEWER IN SAV DRAWING TITLE TRENCHES SAV DRAWING TITLE TRENCHES SAV DRAWING FOR SEWER IN SAV DRAWING TITLE SAV DRAWING TITLE TRENCHES SAV DRAWING TITLE SAV DRAWING TITLE SAV SAV DRAWING TITLE SAV SAV DRAWING TITLE SAV SAV DRAWING TITLE SAV SAV DRAWING TITLE SAV SAV DRAWING TITLE SAV SAV DRAWING TITLE SAV SAV DRAWING TITLE SAV SAV SAV SAV SAV SAV SAV SAV	CLENT: URBAN INFRASTRUCTURE DEVELOPMENT CORPORATION SEMANTE TOR: SEMANTE TOR: SEM	<ol> <li>NOTES:-</li> <li>1. ALL DIMENSIONS ARE IN MM.</li> <li>2. GRANULAR BEDDING AS PER APPROVAL OF ENGINEER.</li> <li>3. PCC MIX AS PER APPROVAL OF ENGINEER.</li> <li>4. IN ROCK, TRENCH IS EXCAVATED AT LEAST 150 MM BELOW THE BELL OF THE PIPE EXCEPT WHERE CONCRETE CRADLE IS USED.</li> <li>5. WELL GRADED CRUSHED ROCK OR GRAVEL WITH THE MAX. SIZE IS RECOMMENDED.</li> <li>6. THE ENCASEMENT OF PIPE AND WIDTH OF EXCAVATION SHALL BE AS PER CPHEEO MANUAL ON SEWERAGE AND SEWAGE TREATMENT.</li> </ol>

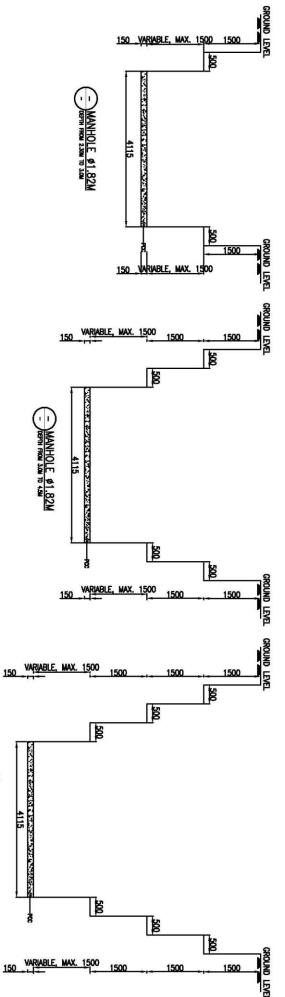
Bc

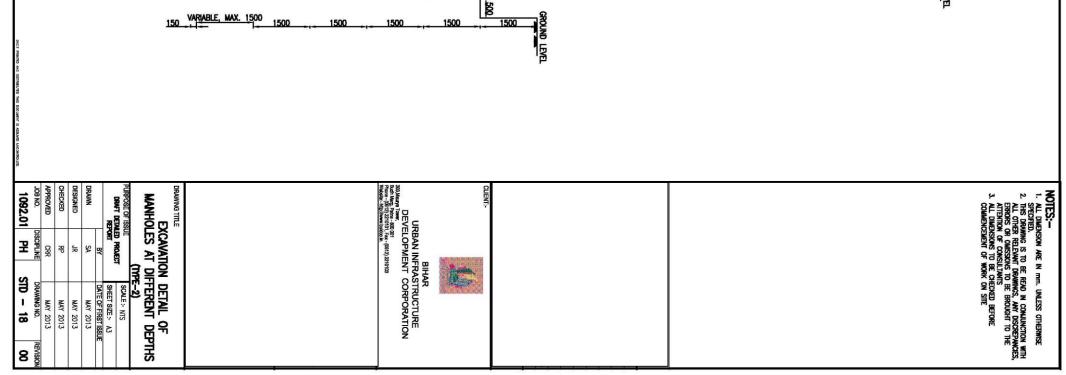

300

COMPACTED GRANULAR MATERIAL


CLASS – B

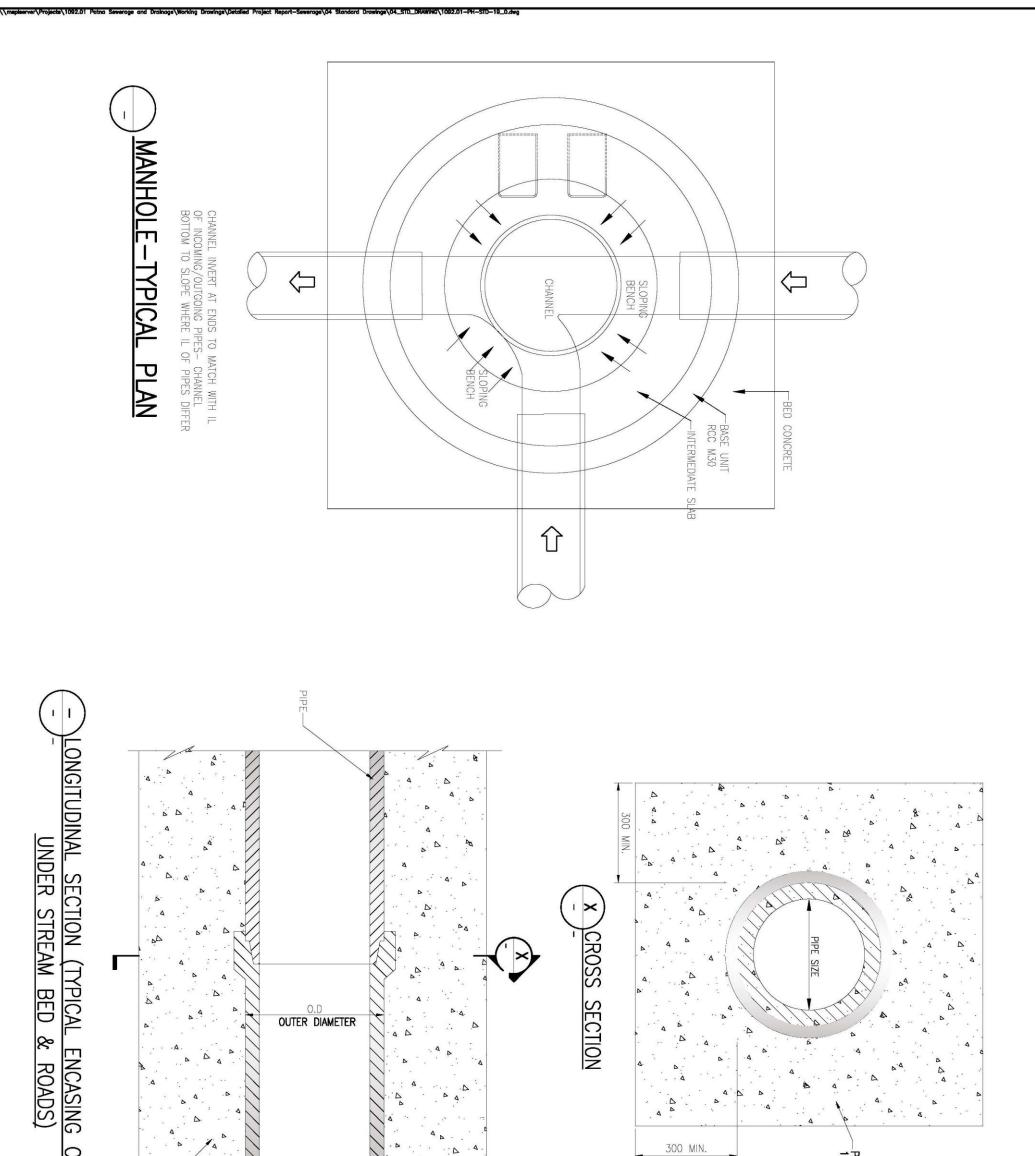




Top Frit Labort to own below     SA       T WHERE CONCRETE CRADLE     DESIGNED       S SHALL CONFORM TO     CHECKED       AND SEWAGE TREATMENT.     APPROVED       OB NO.     DISCIPLINE       1092,01     PH	URBAN INFRASTRUCTURE DEVELOPMENT CORPORATION Matheway Prove Matheway Prove Mathew		2. THIS DRAWING IS TO BE F ALL OTHER RELEVANT DRA EPROPEY OF CONSULTANT ALL DIMENSIONS TO BE C COMMENCEMENT OF WORK
MAY 2013 MAY 2013 MAY 2013 MAY 2013 MAY 2013 REVISIO STD – 15 00	CORPORATION	AR	Is draine is to be rejo in conjunction with the drained by the bounds, are destructed to mark or constant to the broken in dialogies to be checked before dimensioned of work on ste

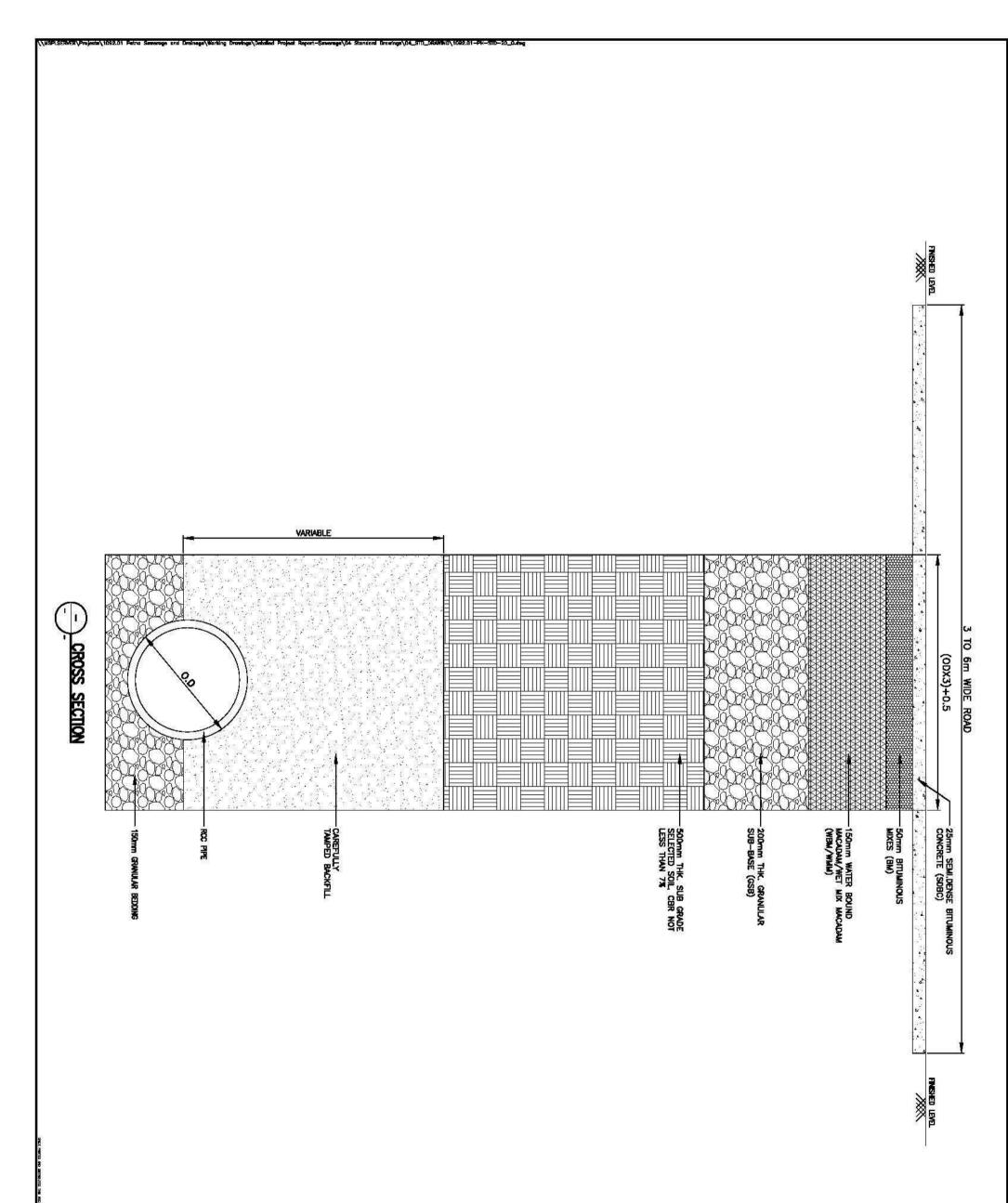


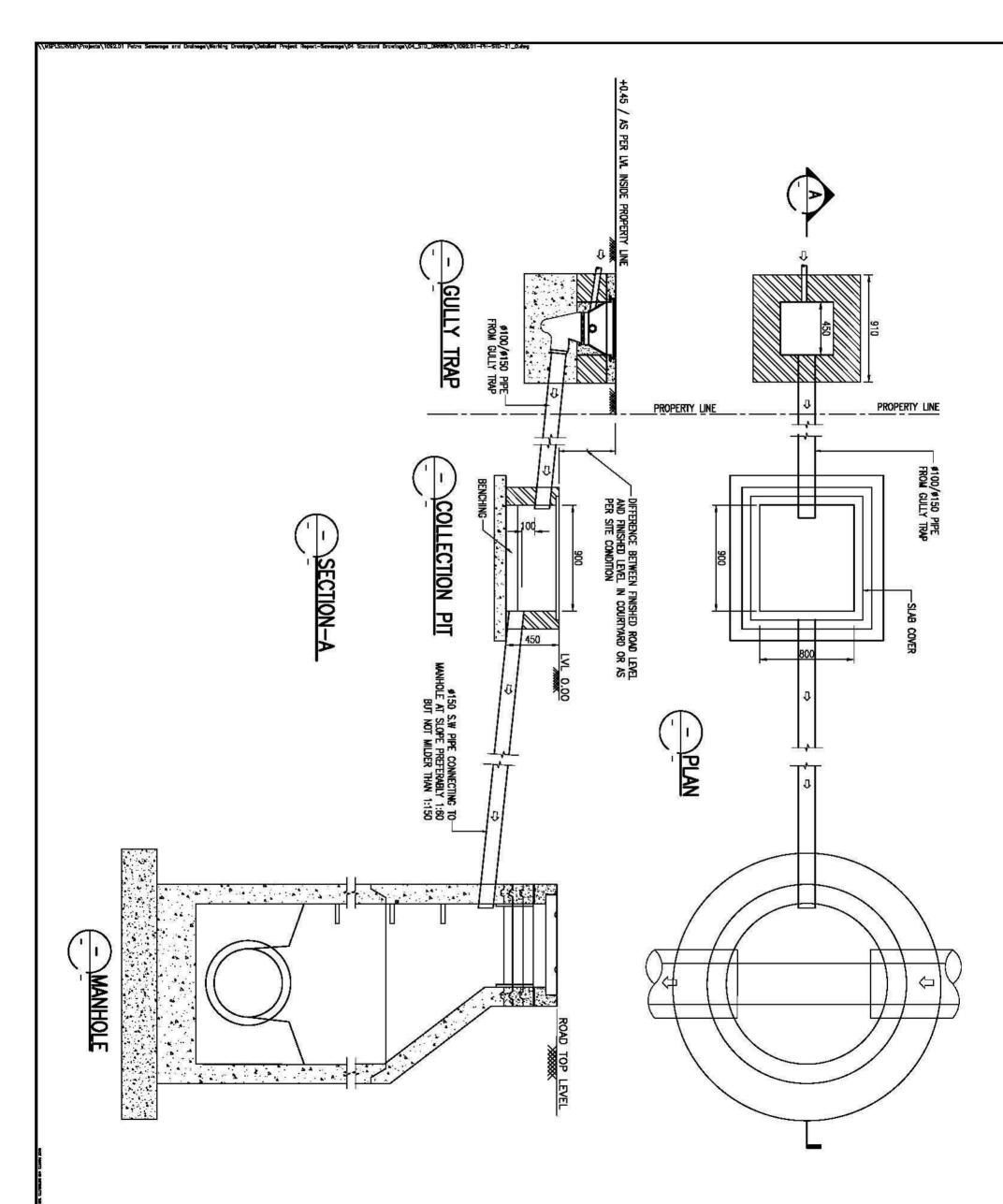

OFFE FALLE AND	1500 1500 1500	LISOO FEVEL	~ KS	, <b>1</b> ⊢
DRAWING TITLE       EXCAVATION DETAIL OF PIPE TRENCHES AT DIFFERENT DEPTHS       DEPTHS       SALE: 1:40       DRAWN       BY       DATE OF FIRST DRAWN       SALE: 1:40       DATE OF FIRST ISSUE       DATE OF FIRST ISSUE       DRAWN       SA       MAY 2013       DRAWN       DRAWN       DRAWN       SA       MAY 2013       DRAWN       DRAWN       DRAWN       DRAWN       DRAWN       DRAWN       MAY 2013       DRAWN       DRAWN	BIHAR BHAR DEVELOPMENT CORPORATION States Terrer, 2010 Part Mark 2010 Fee. (91/9/2/2010) Water The Terrer State (91/9/2/2010)			NOTES:- 1. ALL DIMENSION ARE IN mm. UNLESS OTHERWISE SECOPED. 2. THIS DOWNER IS TO BE RED IN COMUNCTION WITH ALL OTHER RELEVANT DRAWINGS, MY DISCRET- ERRORS OF OMISSIONS TO BE ORDORET 3. ALL DIMENSIONS TO BE ORDORET 3. ALL DIMENSIONS TO BE ORDORET 4. D = OUTSIDE DOWNETER OF PIPE 5. T = WORKING SPACE 3. JOINT TO SOO DIM PIPE 5. SOOMINI FUR > 900 DM PIPE 5. THE CONTINUET.

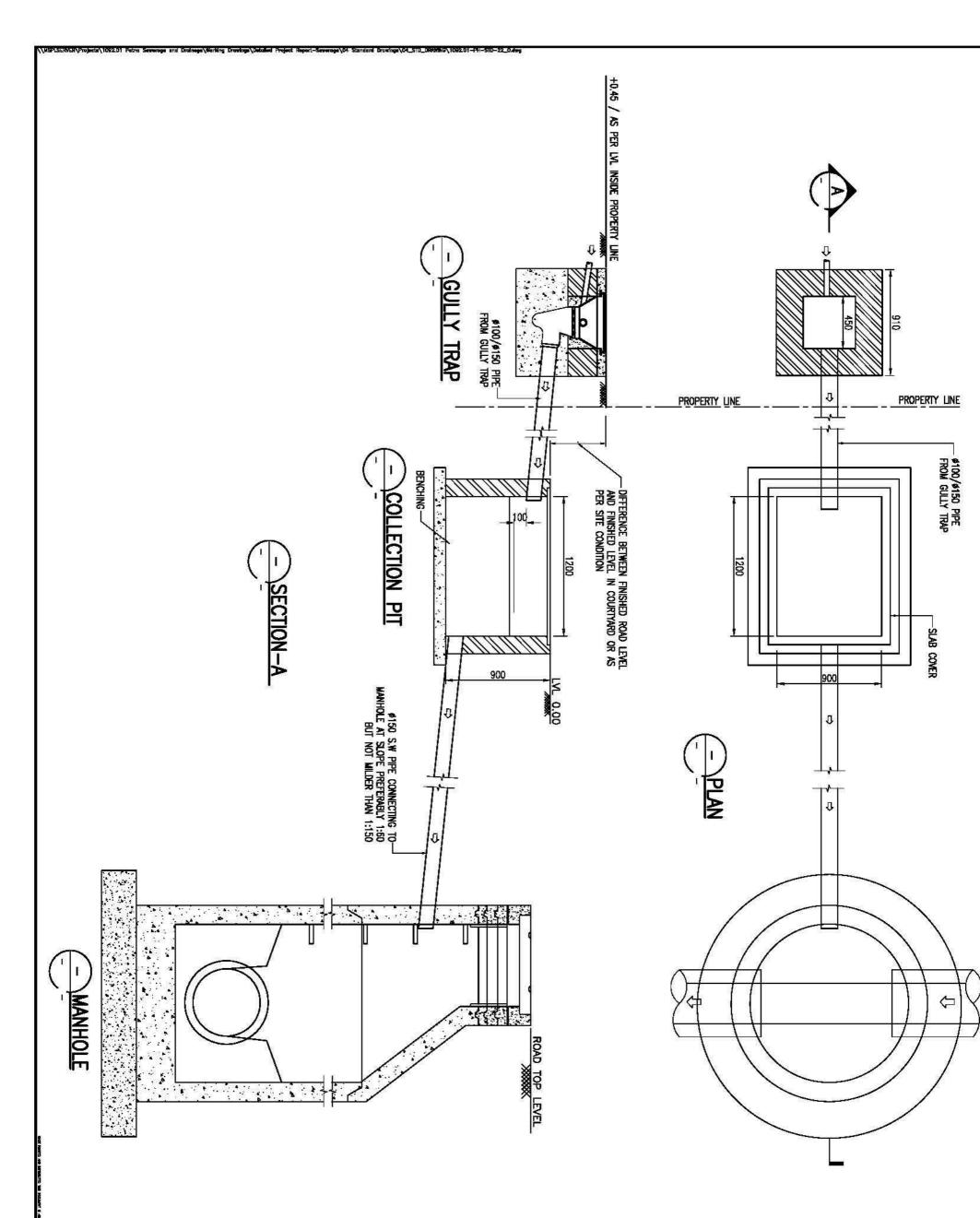








GROUND LEVEL


- MANHOLE \$1.82M



OF PIPE 1:2:4 CONCRETE		 -PLANE CONCRETE 1:2:4
DEWANNIG TITLE MANHOLE DETAIL AT PIPE JUNCTION & ENCISING DETAIL OF SEMER UNDER STREAM BED & ROAD CROSSING PUPPOSE OF ISSUE DEVINT DEMAND BEV BIO & ROAD CROSSING PUPPOSE OF ISSUE DEVINT DEMAND BIO BIO DETAIL OF SEMER UNDER SALE: NIS DEVINT DEMAND SALE: NIS DEVINT DEMAND NO. 1092.01 PH STD - 19 00	CLIENT: BIHAR URBAN INFRASTRUCTURE DEVELOPMENT CORPORATION SUMMER TORY Marking Tory	NOTES:- 1. ALL DIALENSON ARE IN mm. UNLESS OTHERWISE SECRED 1. THIS DOWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT DRAWINGS, ANY DISCREPANCIES, ERRORS OR OWISSIONS TO BE CHECKE OMMERICALENT OF WORK ON STRE ENVASION TO BE LISED WHERE SEVER IS CROSSING STREAM RED OR MOUN.







**Annexure-3** 

PN - 130418

REPORT ON

## GEOTECHNICAL INVESTIGATIONS

FOR THE PROPOSED CONSTRUCTION OF

## STP ON NEW LOCATION

NI

DIGHI KALA, HAJIPUR

Work Order No. TT/Soil-Test/BFC/Hajipur, Dated : 20.09.2012 Work order amendment no. - 1, Dated : 25.03.2013

# Tri-Tech (Beijing) Co., Ltd.,

Plot No. 293, Kehar Singh Estate, Westend Marg, Opp. "D" Block Saket, Saidula Jab, New Delhi – 110 030.

May, 2013



23.20-06



## BAIDYANATH FOUNDATION CONSULTANTS Pvt.Ltd.

[Unit : Bihar Foundation Consultants] Ganga Darshan Apartment P.O. Sadaqat Ashram **Patna - 10** 

[e-mail : bifcon.pat@gmail.com, Phone No: + 91612 - 6455320]

## **SUNTENTS**

100,

Z	Recommendations	₽-£
9	Foundation Analysis	£
Ç	Soil Stratification	5
Ŧ	Presentation of Test Results	5
£	Laboratory Test	5
7	Field Work	I
Ţ	Introduction	I
.oV.IZ	Description	<u>Page No.</u>

## xipuəddy

[Containing Figures and Tables]

qnM	Location	səloH	Bore	<b>.</b> A.
-----	----------	-------	------	-------------

- B. Field Test Observations & Laboratory Test Results
- C. Graph of Grain size Analysis
- D. Triaxial shear / Direct shear strength test curves
- E. `e-log p' Curves from Consolidation Tests
- F. Sample calculation of pile / bearing capacity

PN - 130418

#### STP ON NEW LOCATION IN DIGHI KALA, HAJIPUR. Seport on Sub Soil Investigations for the Proposed Construction of

#### INTRODUCTION

• Т

The subsoil investigations reported herein were taken up to find out the nature of subsoil at the site of the proposed construction and to recommend. The capacity and type of its foundation. After certain tests on the soil, as detailed below, the desired recommendations have been made on **page 3 - 4** of this Report.

9950

#### 2. FIELD WORK

2.1.

 $\bigcirc$ 

The fieldwork consisted of sinking bore holes, collecting soil samples and conducting the necessary field tests.

#### Boring

Taking guidance from IS: 1892, 150 mm diameter bore holes were sunk at locations shown in the bore hole location map.

#### 2.2 Sampling

#### 2.2.1 Undisturbed Soil Samples

Open drive samplers of 100-mm diameter and about 450-mm length were used for obtaining undisturbed samples of cohesive soils. The collection, scaling, labeling and transportation of the samples to the laboratory were done as per the IS guide-lines.

#### 2.2.2 Disturbed Soil Samples

Disturbed soil samples were collected at suitable intervals of depth (not more than 2.5 m) and at all depths of change in the nature of the subsoil. These samples were sealed in polythene bags with proper identification labels.

#### 2.3 Field Tests

#### (TAS) stant reiteration Tests (SPT)

These tests were conducted as per IS: 2131 – 1963. The depth interval between two consecutive tests was 1 to 1.5 m. The tests were located in between the levels at which undisturbed soil aamples were collected.

**Baidyanath Foundation Consultants Pvt. Ltd.** Ganga Darshan Apartment, Patna-10 [A unit of Baidyanath Foundation Consultants Pvt. Ltd.]

PN-130418

# STP ON NEW LOCATION IN DIGHI KALA, HAJIPUR.

#### LABORATORY TESTS

3'

Some or all of the following laboratory tests, as necessary, were done on the collected soil samples. Representative soil samples were selected for this from the different soil strata encountered during boring. The tests were performed as per the relevant Indian Standard Codes of Practice.

- (a) Natural moisture content
- (p) Bulk density
- (c) Grain size analysis (using sieves and / or hydrometer)
- (d) Specific gravity of soil solids
- (e) Atterberg's limit tests (liquid, plastic and shrinkage limits)
- (f) Shear Tests :
- [I] Triaxial compression test (unconsolidated undrained), generally for fine- grained soils
- [II] Unconfined compression tests, only on cohesive soils
- [III] Direct shear tests, generally for coarse-grained soils

(g) Other tests as and when required.

## 4. PRESENTATION OF TEST RESULTS

The field and laboratory test results are given in the Appendix B.

#### 5. SOIL STRATIFICATION .3

The two bore holes sunk at the site and the results of held and laboratory tests conducted on the collected soil samples indicate that the soil stratification at the site is as describe below.

The sub soil up to about 7 m in BH 1 and 5.5 m in BH 2 is [a] silty clay [CL/CI]. Then follow layers of [b] sandy clayey silt/ silt [CL-ML/ ML] up to 14.5 m in BH 1 and up to the investigated depth of 20 m in BH 2 while, in BH 1, [c] sand / silty sand [SP/SP-SM] lies up to the investigated depth of 20 m in below GL.

Water table was struck at about 2.5 m to 2.6 m bgl in April, 2014.

**Baidyanath Foundation Consultants Pvt. Ltd.** Ganga Darshan Apartment, Patna-10 [A unit of Baidyanath Foundation Consultants Pvt. Ltd.]

Ζ

500

PN - 130418

0

D

#### STP ON NEW LOCATION IN DIGHI KALA, HAJIPUR. Seport on Sub Soil Investigations for the Proposed Construction of

#### 6. FOUNDATION ANALYSIS

The safe capacity of foundation of any type and size may be determined on the basis of the soil data given in this Report by using the standard methods of foundation design and following the relevant Indian Standard Codes.

#### 7. RECOMMENDATIONS

The proposed structure may be provided with shallow foundations [strip, square or raft].

By way of example, the values of safe capacities of shallow foundations of certain sizes and depths have been calculated (vide Sample of Calculation

125	4.4I			10	
SZ	1227	5.91	0.11	3	5.4
SZ		8.62	L.TI	5	
172	12.6		(191 M)	10	
SL	(	12.0	9.8	3	0.6
94	<ul> <li>(44)</li> </ul>	16.8	5.61	5	
172	12.0	- 45 M		10	
SL		13.6	L°L	3	2.5
SL		12.5	8.11	5	
172	4.11			10	
S2	(10) and	12.2	6'9	3	2.0
54	1.000	14.4	10.3	2	
Maximum expected settlement (mm)	Raft footing	Square footing	Strip footing	(ɯ) ၛႃၣၯၟႃၮ	Level Ground below (m)
	re (t/m²)	ible bearing pressu	swolls tsN		Depth

#### Table 1 : Allowable Net Bearing Pressures [ qna ] and Settlements Expected [s]

in Appendix F 1 to F 2). The calculated values have been tabulated below.

Continue on next page

ε

hos

**Baidyanath Foundation Consultants Pvt. Ltd.** Ganga Darshan Apartment, Patna-10 [A unit of Baidyanath Foundation Consultants Pvt. Ltd.]

PN-130418

0

O

 $\odot$ 

 $\bigcirc$ 

 $\bigcirc$ 

 $\bigcirc$ 

 $\bigcirc$ 

 $\odot$ 

 $\odot$ 

## STP ON NEW LOCATION IN DIGHI KALA, HAJIPUR. Report on Sub Soil Investigations for the Proposed Construction of

100	9'99	-		10	
20		85.3	9°T <i>L</i>	3	12.0
20		0.701	9'68	5	
001	7.84	(長年)		ΟŢ	
20		4.78	2.98	3	12.0
20		8.28	£.6ð	5	
001	0.72	- 10-10-		10	
20		36.0	9.05	3	10.5
20		1.54	<b>7.</b> 95	5	
100	20.6	51 1999		10	
20		52.0	21.5	3	S.7
20		58.9	54.5	7	
001	2.71			10	
20	**	<i>L</i> .91	0.71	3	0.9
20	(4.4)	22.3	0.01	7	
marimum expected (mm) anometric (mm)	gnitool flaff	Square footing	Strip footing	(ɯ) qıpiM	Level Ground below (m)
	re (t/m²)	ıble bearing pressu	Net allowa		Depth

#### Table 1 : Allowable Net Bearing Pressures [ qna ] and Settlements Expected [s]

: sətoN

0

0

foundation trenching or piling, suitable steps should be taken. If a subsoil condition much different from those reported herein is met with during 'L

DMC and tremie method of pile concreting should be adopted as the water table is 5.

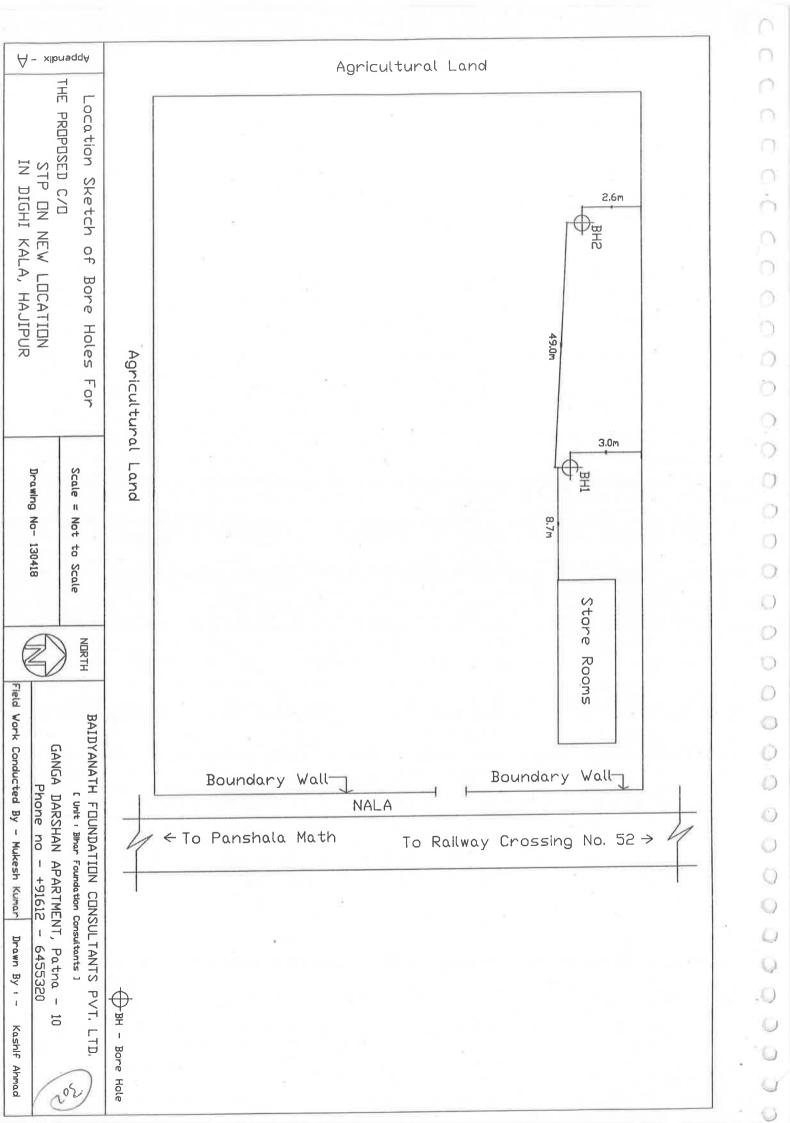
near the ground surface.

expansive soil of type CI by layers of compacted local sand. Shallow foundations or pile caps should be isolated from the surrounding .с

For Baidyanath Foundation Consultants Pvt. Ltd.,

mm m

Þ


202

Chief Consultant. (Dr. C.N. Sinha, HE)

TD. -M WINd

[A unit of Baidyanath Foundation Consultants Pvt. Ltd.] Ganga Darshan Apartment, Patna-10 Baidyanath Foundation Consultants Pvt. Ltd.

PN-130418



Appendix-B1

105

Baidyanath Foundation Consultants Pvt. Ltd., Ganga Darshan Apartment, Patna -10. [Unit : Bihar Foundation Consultants]

20.0	19.5	19.0	18.0	17.5	16.5	16.0	15.0	14.5	13.5	13.0	12.0	11.5	10,5	10.0	9.0	8.5	7.5	7_0	0_0	5.5	4 5	4.0	3.0	2.5	15	1.0	Sa Be	mple Depth low GL (m)		New Location fr BORE HOLE NO.
	S13		S12		·S11		S10		6S		8S		S7		S6		SS		S4		S3		S2		S1		Sa	mple No.		E NO. : 1
	>50		>50		œ		75		70		65		40		34		55		44		22		g		00		Obsr	Value observation		STP in Dighi
Reduisit grey silly saile or -SM			1		Reddish arev sand SP	L			L	kao a	J						5					Reddish grey slity clay. CL		•••••				Visual Description of Soll with IS Classification		New Location for STP in Dighi Kala, Hajipur.
-	19.0						14.5										7.0									0.0	from	Depth(m)	_	
200		19.0				-		14.5										7.0									to	h(m)		BORING
	<u>.</u> D			L	ב א ול		L		l)			] 0	J N								!	7.0	6				Thi	ckness (m)		BORING METHOD : Ro
											26.8						29.4						34.0		33.0		Liq	uid Limit		BORING METHOD : Rotary TERMINATION DEPHT : 20
											22.9						23.6						18.6		23.1		Pla	stic Limit		20.0
	1.84		1.84		1.84		1,84		2.01		2.01		1 99		1.99		2.00		2.07		2.03		1.99		1.98		Bu	lk Density (g	m/cc)	З
	34.8		34.8		34.8		34.9		24,7		24.8		26,1		26.4		25.8		21.6		23.9	-	26.4		26.9			tural Moistur ntent (%)	e	
-	2.60		2.60		2.60		2.60		2.68		2.68		2.68		2.69	-	2.69	_	2.69		2.69		2.69		2.69	_	Sp	ecific Gravity	r	RECORD ON
	DS		DS		DS		DS	iiiiiii	E		UC		υu		UU	CIT C	UU		υυ		Ч		C		υυ		Ту	be of Test		DON
	0.00		0.00		0.00		0.00		86.0		0.92		0.65		0.61		0.78		1.26		0.80		0.46		0.42			hesion, c g/cm ² )	Shear Test	: 16.04.13
	35_1		35.1		35 1		35.0		9.6		9.8		11_6		11.2		10_4		6.1		5.9		5.0		4.6		Fri ø°	ction Angle,	st	ω
																					0.120						Co (Co	mpression Ir	ndex	

0

o o ò

0

Ô

Ő

Ø

0

0.0

0

Ø

0

0

0

O

Ó

Ò

0

Ø

ò

0

Ø

0

O

Q

0

Ö

Ó

Appendix-B2

ano

Baidyanath Foundation Consultants Pvt. Ltd., Ganga Darshan Apartment, Patna -10. [Unit : Bihar Foundation Consultants]

Sample Depth 20.0 19.5 19.0 18.0 17 5 16.5 16.0 15.0 14.5 13.5 13.0 12.0 11.5 10.5 10.0 6.0 5.5 30 9.0 8.5 7.5 7.0 4. 5 4.0 25 1.0 1.5 Below GL (m) S13 S12 S10 S11 S Sample No. **6**S 8S S7 SG SS \$2 SS ŝ observation SPT 'N' Value Obsr. >50 88 69 63 60 29 24 20 ŝ 78 32 19 5 M Reddish grey silty clay. Cl ž Reddish grey clayey silt. ML Reddish grey sandy clayey silt. Reddish grey sandy clayey silt. Visual Description of Soil with IS Classification P P from 11.5 0.0 о.5 ບາ ເກ Depth(m) 20.0 11.5 е. С <del>ა</del>.თ đ 5 5 8.5 3.0 3.0 Thickness (m) 29.8 36.3 25.1 26.8 31.4 36.7 Liquid Limit 23.9 21.6 24.6 23.4 22.5 22. Plastic Limit 2.02 2.02 2.02 2.01 _ 2.03 1.99 2.01 2.01 Bulk Density (gm/cc) .99 1.97 .99 .98 .96 Natural Moisture 27.6 24.0 27.9 24.1 24.1 24.2 24.8 24.8 24.9 26.0 26.9 27.9 28.1 Content (%) 2.69 2.69 2.70 2.70 2.68 2.68 2.68 2.68 2.69 2.68 2.68 2.68 2.68 Specific Gravity S S S 2 S S 2 S 2 5 Type of Test 5 5 5 0.70 0.46 Cohesion, c 0.34 0.26 0.60 0.22 1.14 1.00 0.91 0.88 0.36 1.31 29 (kg/cm²) Friction Angle, 11.5 11.6 12.4 12.5 <u>5</u> 10.1 5.7 5.6 9.5 9.8 9.4 9.4 9.6 φ° 0.122 Compression Index

1

0

ò

0

O

Ö

0

0

0

0

0

 $\bigcirc$ 

Ó

0

0

0

D.

0

0

Ö

Ô

Ó

0

0

0

0

O

**BORING METHOD : Rotary** BORING FINISH DATE : 16.04.13

TERMINATION DEPHT :

20.0 m

RECORD ON

17.04.13

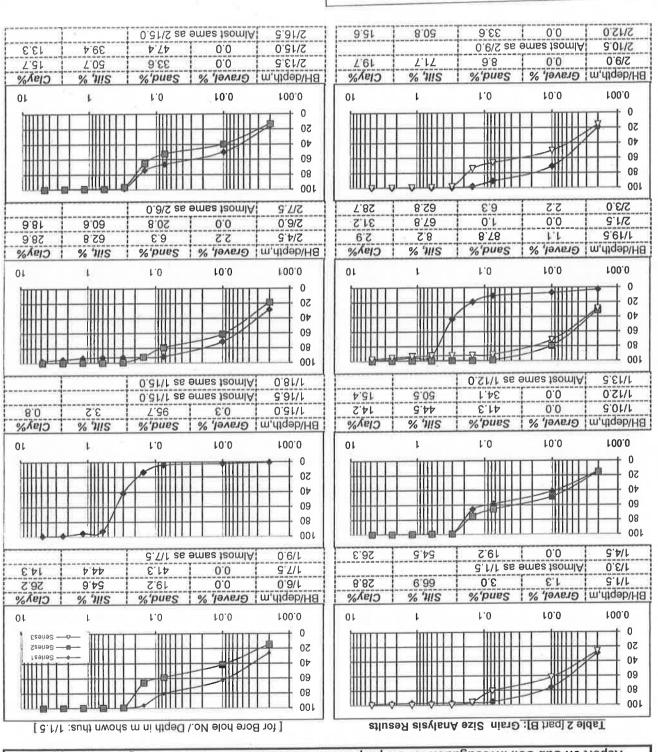
Shear Test

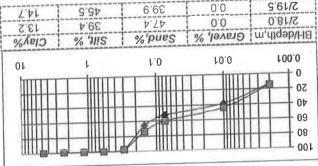
 $(C_c)$ 

WATER TABLE

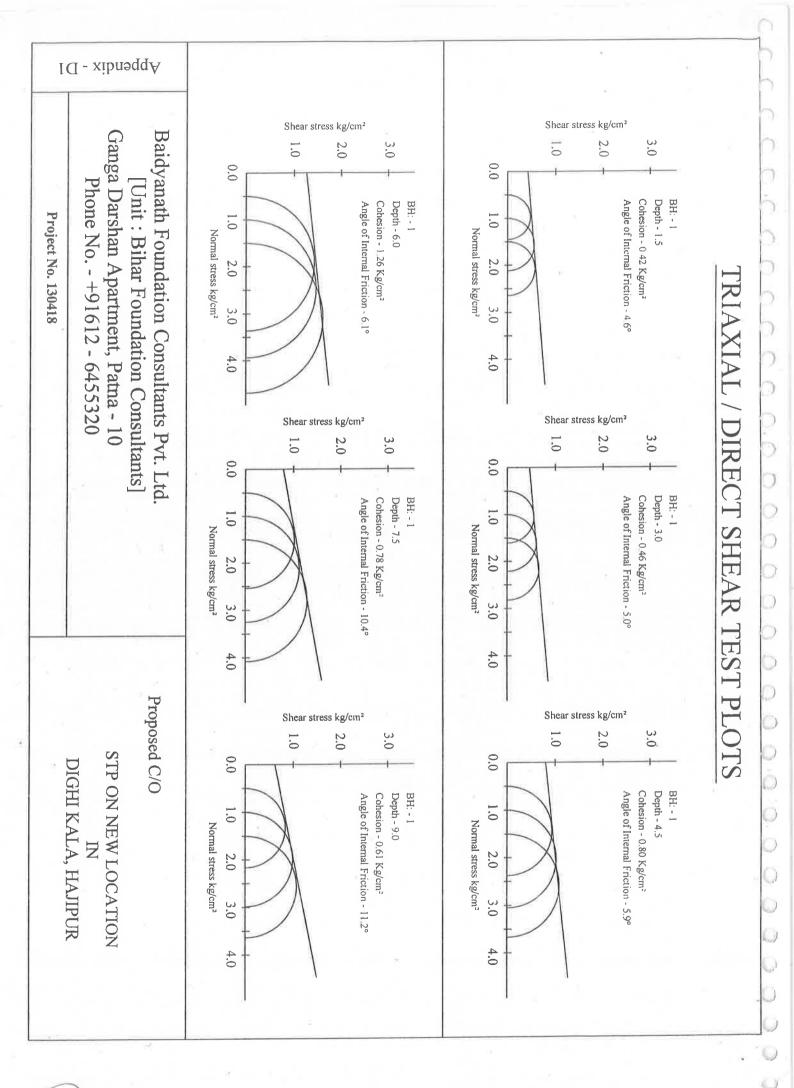
2.60 m bgl

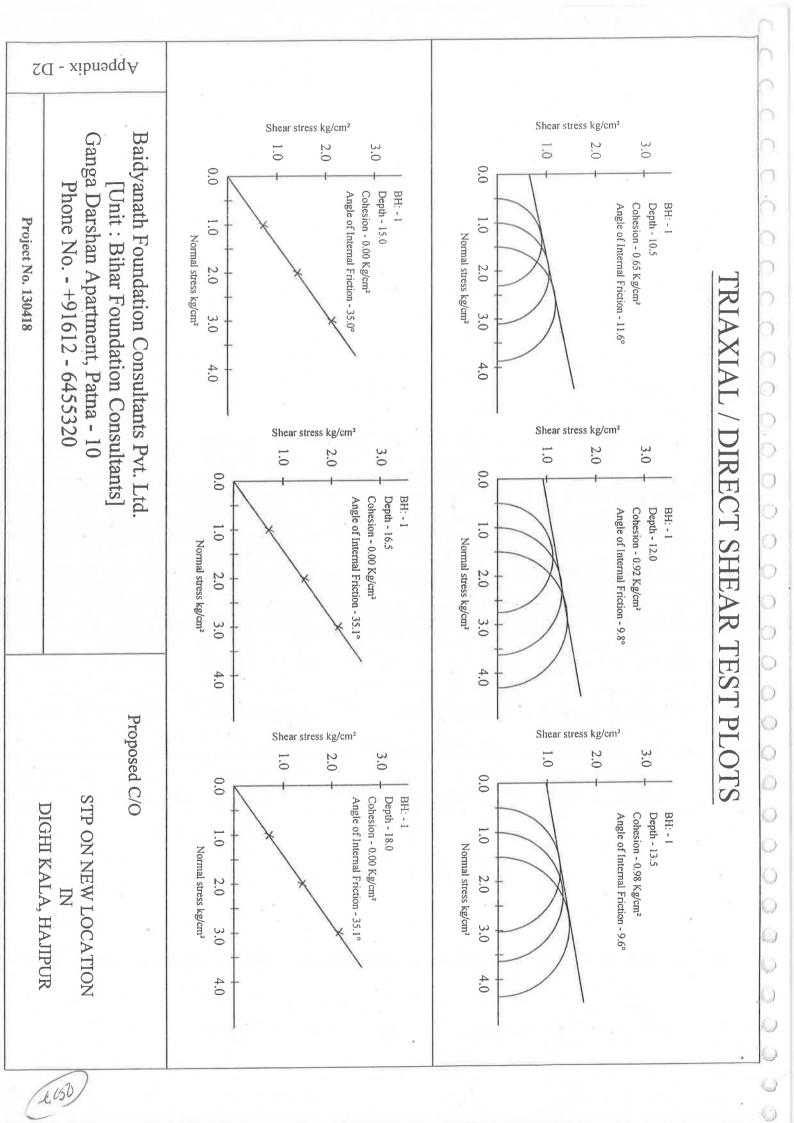
BORE HOLE NO.

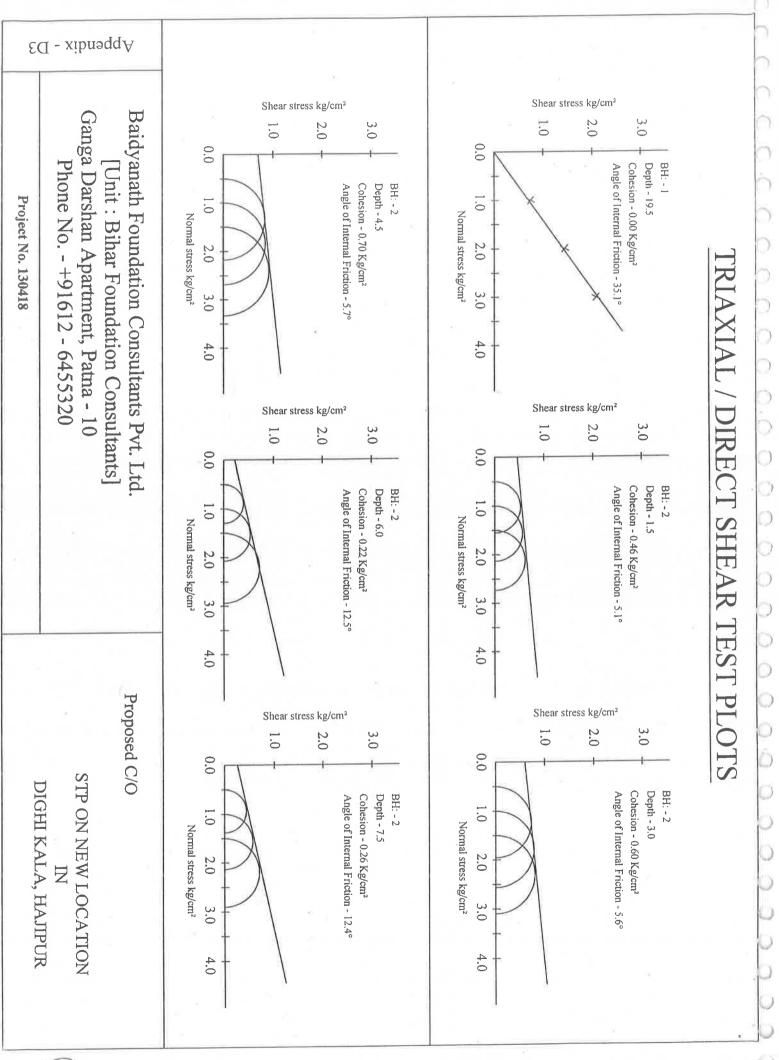

... N

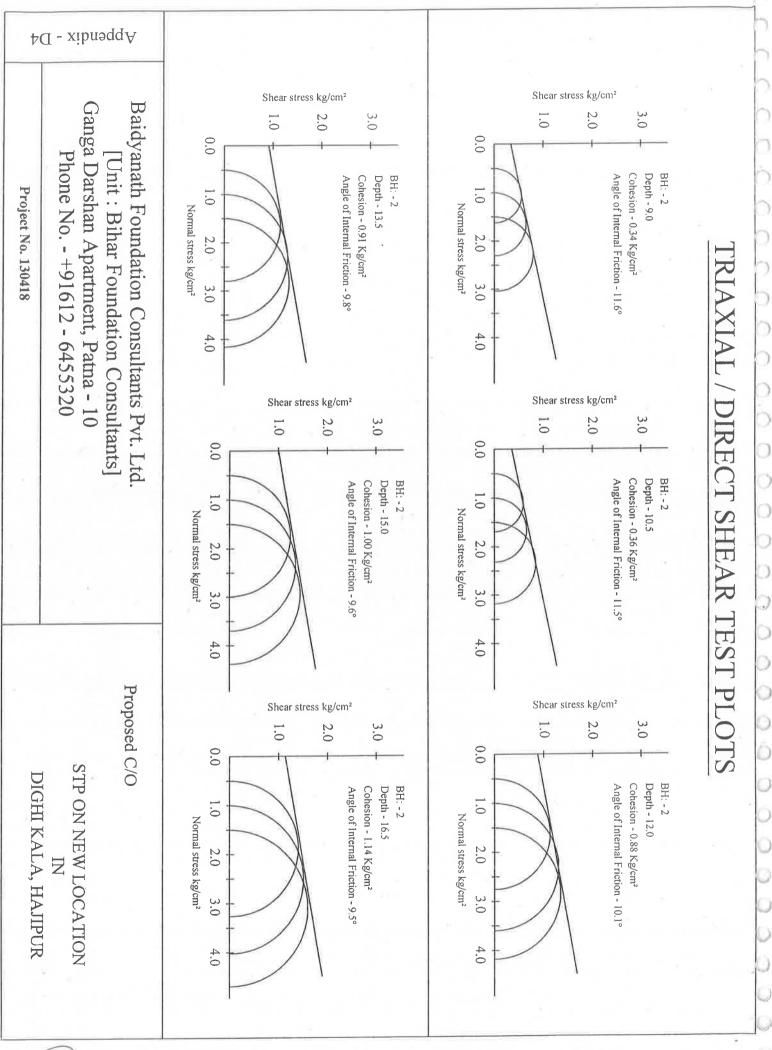

New Location for STP in Dighi Kala, Hajipur NAME OF WORK : Sub soil Investigation for C/O

PN-130418


660


## Report on Sub Soil Investigation for the proposed C/O STP On New Location in Dighi Kala, Hajipur.

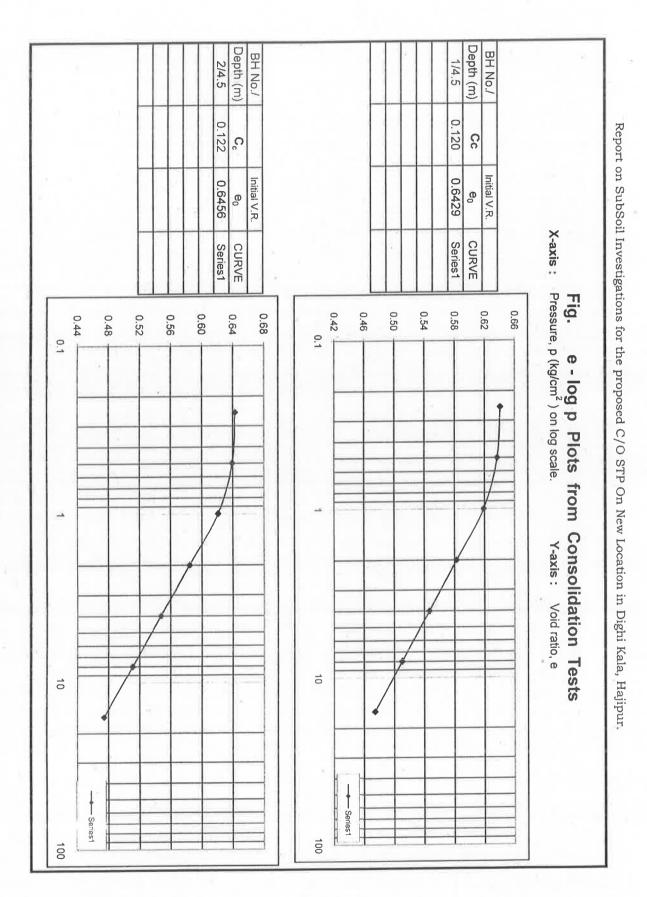



Bihar Foundation Consultants, Ganga Darshan Apartment, Patna -10. [A unit of Baidyanath Foundation Consultants Pvt. Ltd.]










Appendix - D5 Shear stress kg/cm² Ganga Darshan Apartment, Patna - 10 Baidyanath Foundation Consultants Pvt. Ltd. 1.0 3.0 2.0 0.0 Phone No. - +91612 - 6455320 [Unit : Bihar Foundation Consultants] Angle of Internal Friction - 9.4° BH: - 2 Cohesion - 1.29 Kg/cm² Depth - 18.0 Project No. 130418 1.0 Normal stress kg/cm² 2.0 TRIAXIAL / DIRECT SHEAR TEST PLOTS 3.0 4.0 Shear stress kg/cm2 2.0 3.0 1.0 0.0 Depth - 19.5 Angle of Internal Friction - 9.4° Cohesion - 1.31 Kg/cm² BH: - 2 1.0 Normal stress kg/cm² Q 2.000000 3.0 4.0 Proposed C/O 0 0 STP ON NEW LOCATION Ò DIGHI KALA, HAJIPUR Ö 0 Z 0 J ) .) 0 160) 0

Appendix-E

Baidyanath Foundation Consultants Pvt. Ltd., Ganga Darshan Apartment, Patna -10. [Unit : Bihar Foundation Consultants]



0

0

Ö

Ō

Ó

Ö

0

0

0 Ô

Ö

0

0

Q

Ö

Ö

0

ō

PN - 130418

all

#### STP ON NEW LOCATION IN DIGHI KALA, HAJIPUR. Report on Sub Soil Investigations for the Proposed Construction of

#### SAMPLE CALCULATION OF BEARING CAPACITY OF SHALLOW FOUNDATION

capacity of the soil. the next section. The lower of the two values, qna and q , thus determined is taken as the allowable bearing factor of safety. The net soil pressure, q , for a given permissible settlement is then calculated as explained in after dividing the value of the net ultimate bearing capacity qar, calculated as described below, by a suitable The determination of the net safe bearing capacity, q_{ns}, is done on the basis of the shear failure criterion

#### 1. Shear Failure Criterion :

: noitsups griven as per IS:6403-1981 (Sec.5.1.2) by the following equation : The net ultimate bearing capacity  $q_{n\ell}$  (t/m²) of a shallow foundation of breadth B (m) and depth

 $q_{nf} = c N_c s_c d_c I_c + q (N_q - 1) s_q d_q I_q + p (N_q - 1) s_r d_r I_r w$ 

 $\gamma = 1$  unit weight of subsoil (t/m³) [submerged unit weight,  $\gamma$ , is taken where so applicable]  $c = cohesion (t/m^2)$ мреке

q = ettective surcharge (t/m²) = p

stotset agents = shape factors  $N_c$ ,  $N_r$ ,  $N_q$  = bearing capacity factors, which are functions of  $\phi$ , the angle of internal friction of the soil.

 $I_{c}$ ,  $I_{q}$ ,  $I_{r}$  = inclination factors  $d_c$ ,  $d_q$ ,  $d_\gamma = depth$  factors related to cohesion, surcharge and density of subsoil respectively

= water table factor (= 0.5 to 1.0) depending on the depth, D, of water table [vide Table below].

these factors are found for general shear failure by referring to standard tables. If subsoil conditions are such as The bearing capacity factors (N's) are functions of  $\phi$ , the angle of internal friction of the soil. The values of

friction ( $\phi$ ) given by the equation : tan  $\phi' = 0.67$  tan  $\phi$ . The value of cohesion is also reduced to c' = 0.67 c. to lead to local shear failure, the values of these factors are found for a reduced value of angle of internal

1 0:0			8/0 50 ( QN) 1.0					
0.6 1	= M	0() [ >d)	for	+ ا	qq = dy		1.2 1+0.2B/L	= ^b S
G.L. Fou'dn.Level	te "O		8/0 ^{s.0} ( かN) 2.0・	+1 =	= °p	ŀ	1.3 1+0.28/L	= °S

: wolad baseludes are are as tabulated below :

may be obtained from the soil data given earlier. Full submergence of the soil has been assumed. The safe bearing In the present case, the representative values of cohesion  $\bigcirc$  and angle of internal friction ( $\phi$ )

One example of calculation of safe bearing capacity for a certain shape, depth and width of a footing is capacity, q_{ns} has been obtained by dividing q_{nf} by a safety factor, 3.

of Table A. Calculations for other depths and widths of footings are done similarly. given in Table A on the next page. The net safe bearing capacity for the footing is entered in the last column

The value of net safe bearing capacity (q_{ns}) calculated for each set of values of B and D is used for

calculating the consolidation settlement s as explained in Sec. 2 below.

#### Settlement Criterion for Foundation on cohesive soil. •7

FOR sq.// O Rect. STRIP  $I_c$ ,  $I_q$ ,  $I_r = 1$  for vertical load

As per IS:8009(Part I)-1976, Sec. 9.2.2.2, the settlement s (in mm) is given by the equation :

 $s = [1000 \text{ H C}^{\circ} \log (1 + \Delta p/ p_{\circ})] / (1 + e_{\circ}) \lambda$ 

H =thickness (in m) of the compressible layer where

C_c = compression index of the soil

 $e_0$  = initial void ratio at mid-height of compressible soil layer = its m/c (m) x sp. Gravity

 $p_{o}$  = initial effective pressure at mid-height of the layer (Vm²)

 $\Delta p$  = pressure increment at the mid-height of the layer due to the foundation (t/m²).

 $\lambda = correction factor$ 

[Unit : Bihar Foundation Consultants] Ganga Darshan Apartment, Flat No. 403, Patna-10 Baidyanath Foundation Consultants Pvt. Ltd.

Appendix - FI

these values is linear.

BN - 130418

#### STP ON NEW LOCATION IN DIGHI KALA, HAJIPUR. Report on Sub Soil Investigations for the Proposed Construction of

one of these and then added together to get the settlement. If there are different layers with different compression indices and void ratios, s is calculated for each

The pressure increment at any plane due to the footing load may be calculated by assuming the dispersion

A correction factor  $\lambda = 0.80$  is used as per IS Code to find the corrected settlement. If this value of Fig. below) is spread at a depth H/2 below it over a width (B + H/2). of load at a slope of 1 horizontal to 2 vertical. Hence the load applied over a width B of a foundation (vide the

analysis is given below the Table B in Sec. 3. allowable bearing capacity qna If not, trials give the desirued value of qna. One example of this settlement corrected a is within the permissible limit specified in the Code, the corresponding value of q_{ns} is also the net





- B = breadth of foundation
- the zone of influence of the loaded foundation. H =  $1.5 \times B$  = thickness of compressible soil layer in
- compressible layer, of thickness H = (B + H/2). Breadth of the influence zone at the mid-plane of the
- dispersion of load takes place along the other side of In case of a rectangular or square footing a similar

footing.



**.**5.

(B+H/S)

12.04	36.13	84.0	1.22	34.44	2.03	4.4	601.1	1.22	5	5
∃\ înp	înp	Term	Term II	Tem	b	Э	bp = bp	qc	[m] 8	[m] Q
0.43	1.54	6.43	4.8	4.4	2.03		3	STRIP	••	puno∃
= ² N	= pN	= oN	= \$	= 0	= _€ u	1/1 'l	='S'4		ło	Shape

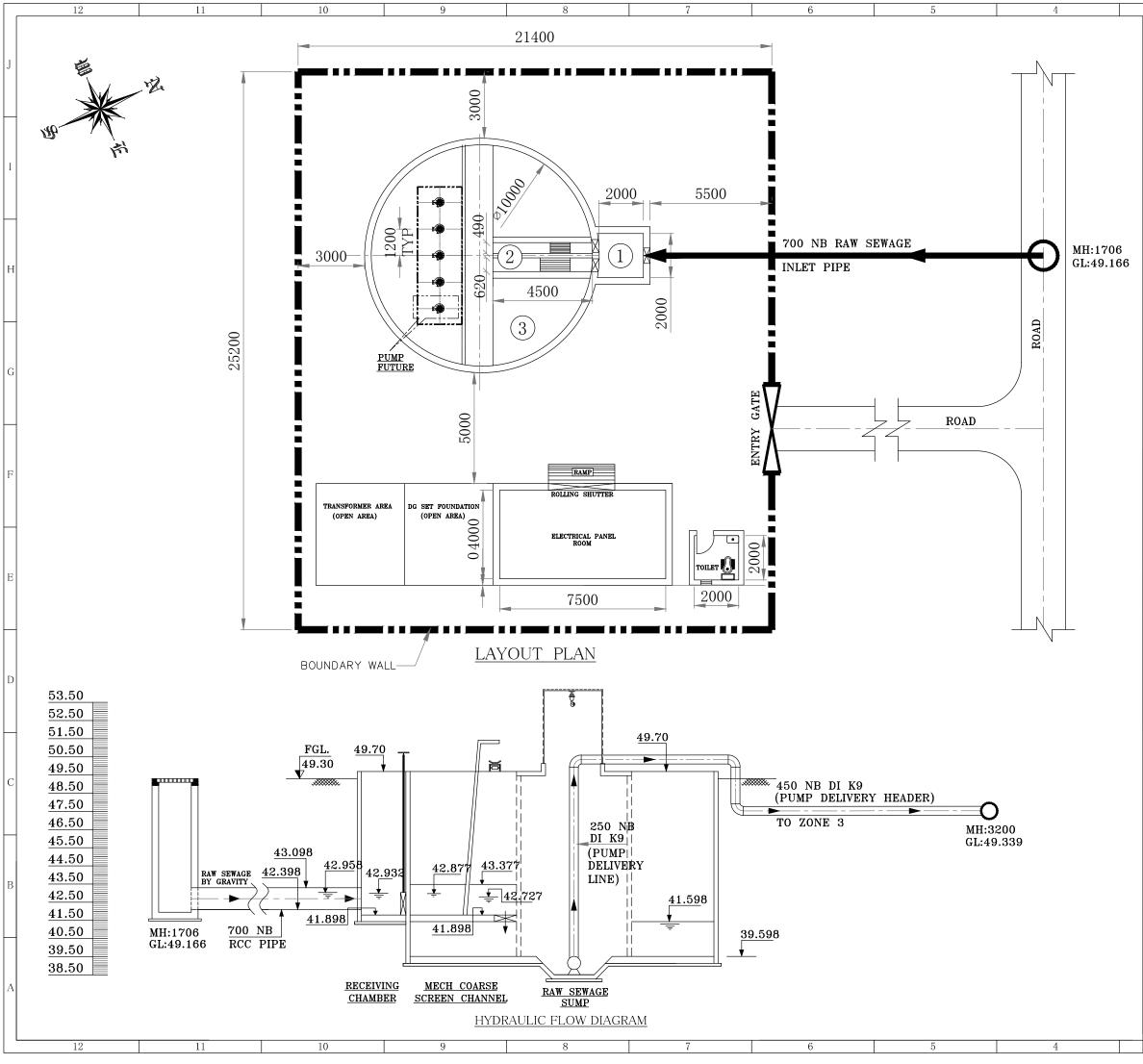
This value is checked for settlement as shown below. The net safe bearing capacity for the footing is to be seen in the last column of the above Table A.

	the second se	_	
11191111195	Calculation of	B	9ld & T
100000110	to nontoluolo	u	

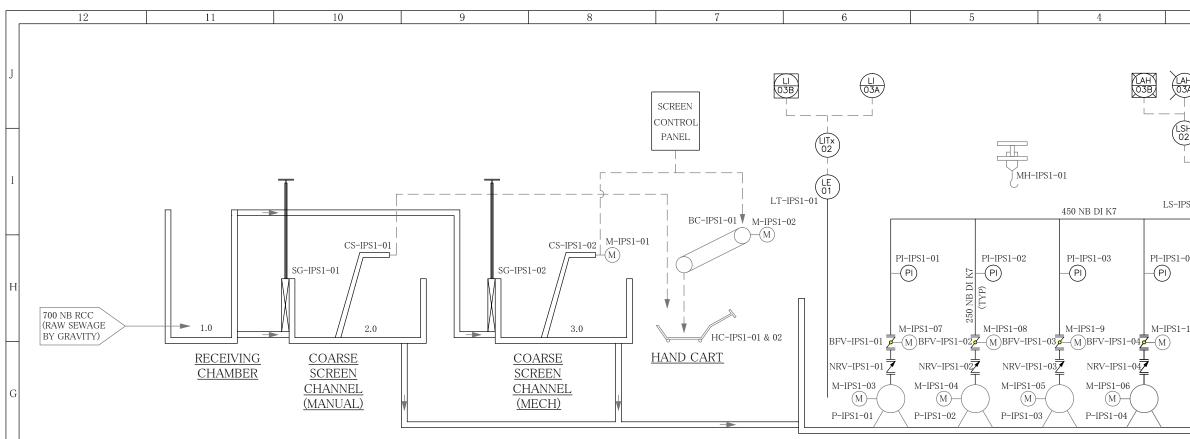
Ĩ	OK	8.47	93.5	4.0	6.8	3.0	3.6	10.3	2.0	2.0
ł	Not OK	82.5	103.1	<u>9</u> .0	6.9	3.0	3.6	12.0	2.0	2.0
t		աա	աա	(od/d⊽	zm/t	w	z ^m /i	2my	[m] 8	[m] (
	Kemarks	աա sղ	[ww] S	+1) 60	d∆	н	od	}np  F	Midth.	Depth
ł	0	= MQ	0.122	= oO	0.6456	= 09	5.69	= \$9	0.24	= W

my 5.01 ad lliw Hence the net allowable bearing pressure for a strip footing of width 2.0 m and depth 2.0 m below ground level

The calculations for footings of other sizes and depths are done similarly.


Appendix - F'2

160


[Unit : Bihar Foundation Consultants] Ganga Darshan Apartment, Flat No. 403, Patna-10 Baidyanath Foundation Consultants Pvt. Ltd.

BN - 130418

**IPS BEP** 



	3				2			1			_
	0	////			4			281 /40	MH:1773	_ ]	
	H:1684 L:49.502 -42.781 RCC 1083 -42.781 RCC 00mm 2000 00mm 2000 00m 00m 00m 2000	Rcc G+1 Sting 200 Sting 200 Rcc Rcc C0:2556 Aucoonth Sting 200	Kcc	N 5 5 MH:13 5 MH:14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.156 IL:4	1706 49.166 42.894/ .724/ .404	C C0:82 D:300mm S:1in290 L:30.0m ACC GL:42 GL:42 C0:83	300mm 9 1in290 14.92 GL:41 IL:45 775 241			J
G   G    46.3 42.70 G   Rc Rc		CC Acc 69mm 1000 7.0m CC 7 CC 86 CC 96 CC 96	MH:1704 GL:49.262 IL:42.745 IPS-1 GL:48.49 IL:42.39	Aes. G 0.300mm 1.1/1/2000 33 8	200	Streets	0.300/mm 5:1/#290 L2005m 1776	Bed	<u>.</u> _//		Ι
CO: D:15 S:1i	10-00 11-1700 11-1700 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11-19 11	Hut A.	702 .329 Hut 04 00mm 1250 im -	,		ollino,		T G T Acc G+1	7-	-	Н
	KEY PLAN										
											G
				I I	NIT I	IST					
SN	10.	UNIT LIST . Description size in meters ^f									
3.1		RECE			MBER		2.0 x 2		LING		
2					V CHAN	JNFL S	4.5	.0			
- 3			WELL				4.5 10.0 Ø	v 2 0	SWD		-
4			SFOR				4.0 x 4		300		
					$\frac{1}{1}$ NEL R	2014	4.0 x 4				Е
6					ATION		4.0 x 7				_
7		TOIL			AHON		2.0 x 2				
	NOTE:- 1.) BUIDCO TO PROVIDE AND TERMINATE 11.0 KV HT POWER SUPPLY AT HT SIDE OF TRANSFORMER.										D
0	12.08.1	14	SU	BMISSIO	N FOR APP	ROVAL		M.S.	AKS	AKS	
REV. CLIEN		:	10		URBAN I	NFRAST	चनाम्फ्फाइ	DEVE	CHKD.	APPI JT	). 
BIHAR URBAN INFRASTRUCTURE DEVELOPMENT CORPORATION LTD., PATNA PROJECT:- 22 MLD SEWAGE TREATMENT PLANT AT HAJIPUR,											
BIDDI	ERS NA	.ME:	22			BI	HAR				
				TRI-		•	NG) CO IEW DEL		NY L'É	D.	
DATE:	12.	.08.14	TITLE: -	9511	ים יייו מעמ	AN CUM	HYDRAUI			RAM	
CHKD.	1	w.s.	11	שוני.	AIUUT PI	LAN CUM	LIDKAUI	ыс ғы.	on DIAG.	IVAM	
APPD	.:-	aks .	SCALE	SHEET			RAWING NO.	/====			EV.
	APPD: - AKS AS MKD. 1 OF 1 TT/BEI/HJ/1051/IPS1/A06 0										

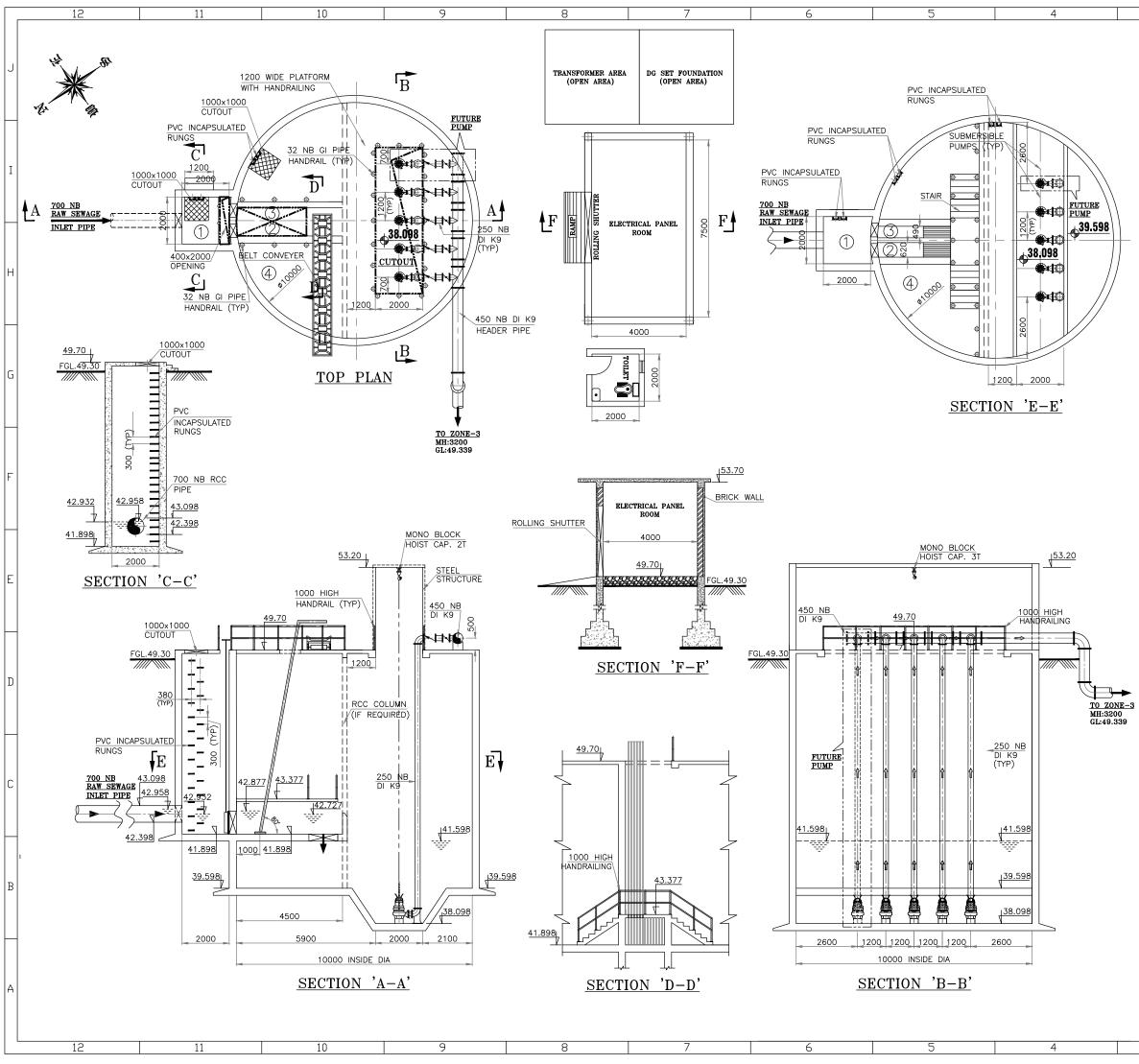


		UNIT	LIST
UNIT	N0.	UNIT DESCRIPTION	DIMENSIONS (M) QTY MOC
1.0		RECEIVING CHAMBER	2.0 x 2.0 x 1.034 SWD + 6.768FB 1 RCC
2.0		MANUAL COARSE SCREEN CHANNEL	4.5 x 0.49 x 0.979 SWD + 0.5 FB 1 RCC
3.0		MECH COARSE SCREEN CHANNEL	4.5 x 0.62 x 0.979 SWD + 0.5 FB 1 RCC
4.0		RAW SEWAGE COLLECTION SUMP (WET WELL)	10.0ø x 2.0 SWD + 8.102 FB 1 RCC

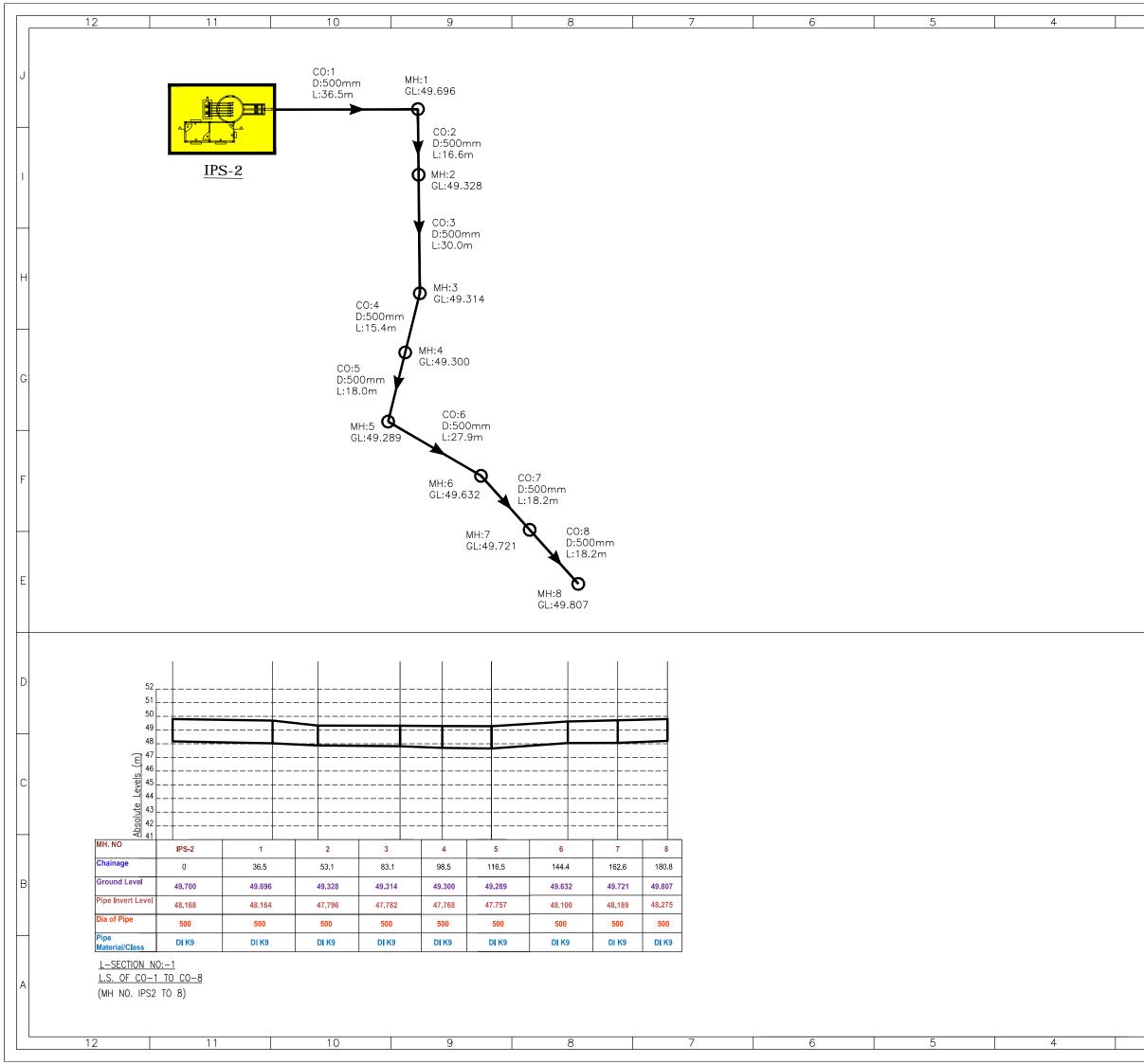
	EQUIPMENT LIST									
TAG NO.	EQUIPMENT DESCRIPTION	SIZE (M) / CAPACITY	QTY	MOC						
CS-IPS1-01	MANUAL COARSE BAR SCREEN	0.29 W x 1.55 HT	1	SS 304						
CS-IPS1-02	MECH COARSE BAR SCREEN	0.33 W x 9.273 HT	1	SS 304						
BC-IPS1-01	BELT CONVEYOR	0.6 W	1	MFG STD						
HC-IPS1- -01/02	HAND CART	0.5 M3	2	MSEP/FRP						
P-IPS1-01/ 02/03/04	RAW SEWAGE TRANSFER PUMPS (W/MOTOR)	210.0 M3/HR × 22.0 MWC	4	AS PER NIT						
M-IPS1-01	MANUAL CHAIN PULLEY HOIST (W/TROLLEY)	3.0 TON	1	MFG STD						

	VALVE/GATE LIST										
TAG NO.	VALVE/GATE DESCRIPTION	DIMENSIONS (MM)	QTY	MOC							
SG-IPS1- -01/02	MANUAL SLUICE GATE, FLANGE BACK FRAME, WALL THIMBLE	450 x 450	2	CI (AS PER NIT)							
NRV-IPS1-01 /02/03/04	NON RETURN VALVE, D/F, PN 1.0, SWING CHECK	250 NB	4	CI (AS PER NIT)							
	BUTTERFLY VALVE, D/F, PN 1.0, ELECTRICALLY ACTUATED	250 NB	4	CI (AS PER NIT)							

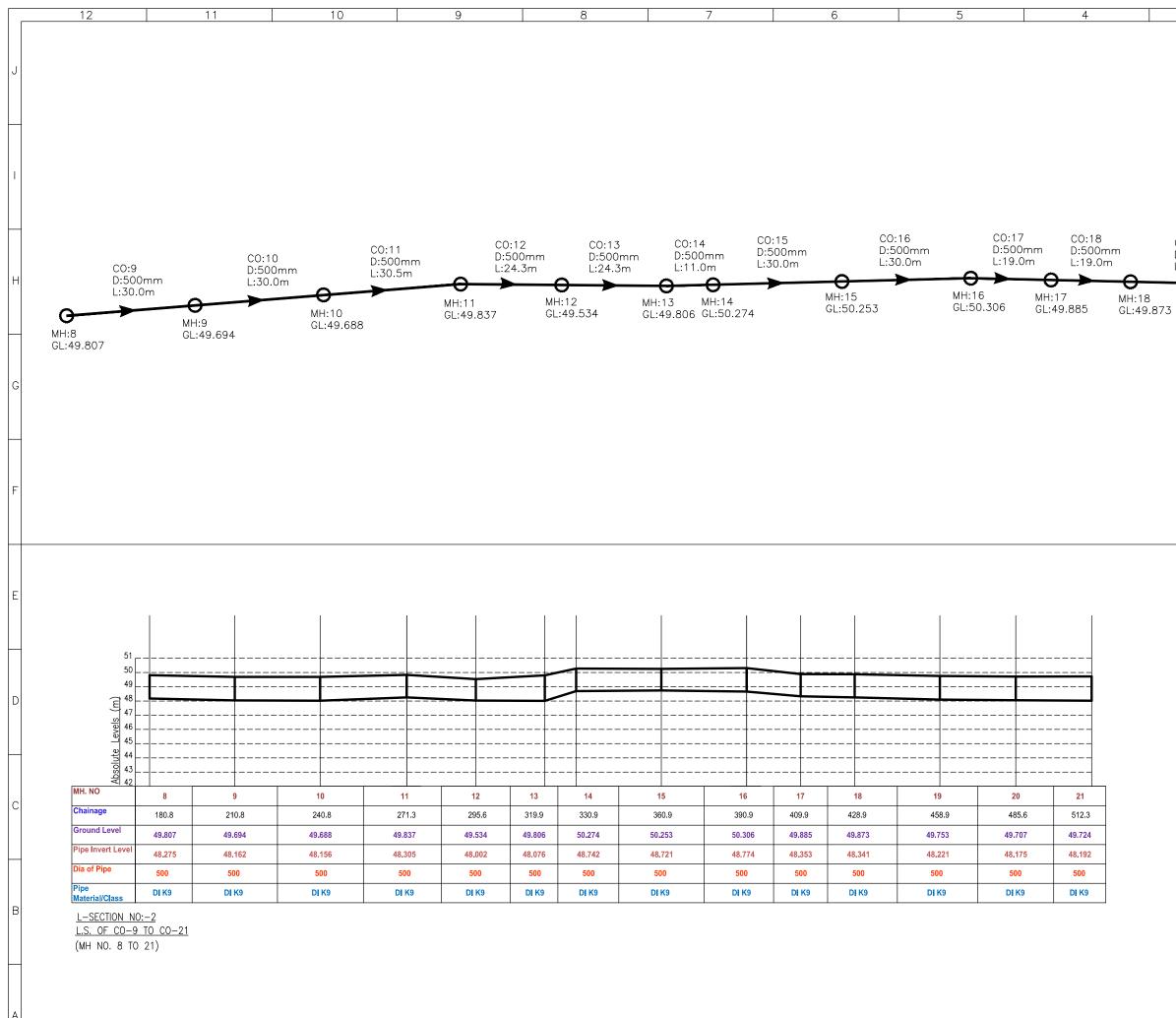
	INSTRUMENTATION LIST									
TAG NO. INSTRUMENT DESCRIPTION SIZE (MM) QTY M										
PI-IPS1-01/ 02/03/04	PRESSURE INDICATOR, DIAPHRAGM	150/100 NB	4	MFG STD						
LS-IPS1-01	LEVEL SWITCH, CONDUCTIVITY TYPE		1	MFG STD						
LT-IPS1-01	LEVEL TRANSMITTER, ULTRASONIC		1	MFG STD						


	LEGENDS:-
	NON RETURN VALVE
	MOTORIZED BUTTERFLY VALVE
$\boxtimes$	GATE
2	SUBMERSIBLE PUMP
$\bigcirc$	LOCAL INSTRUMENT
Ħ	PANEL ALARM
$\square$	SCADA INDICATION
	SCADA ALARM
$\langle \rangle$	HARD WIRE INTERLOCK
	SEWAGE/WATER LINE
	SLUDGE LINE
LSH	LEVEL SWITCH HIGH
LSL	LEVEL SWITCH LOW
LAH	LEVEL ALARM HIGH
PI	PRESSURE INDICATOR

RAW SEWAGE COLLECTION SUMP
(WET WELL)

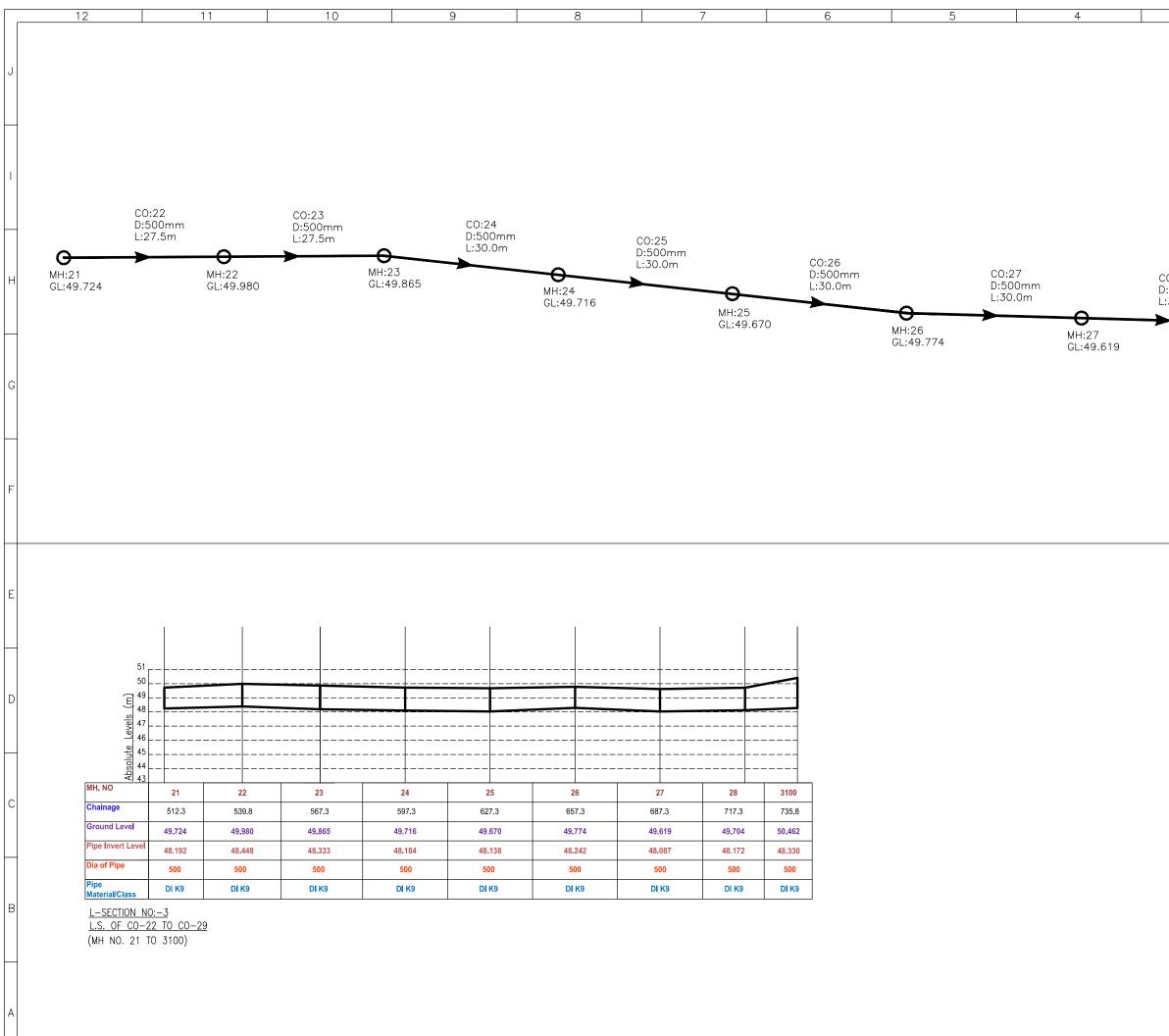

	LEGENDS:-
LAL	LEVEL ALARM LOW
LE	LEVEL ELEMENT
LI	LEVEL INDICATOR
LITx	LEVEL INDICATOR CUM TRANSMITTER

12	11	10	9	8	7	6	5	4	


		3	2 1	
$\neg$	$\checkmark$		$\neg$	
H) (LAH B) (03/	$\begin{pmatrix} 1 \\ 4 \end{pmatrix}$		$ \begin{array}{c} L \\ B \\ \hline 03A \end{array} $	
	~			
	<u> </u>			
(LSH 02	1)		L 2 AT LOW LEVEL	_
$\frown$				
L				
		Ē		1
LS-IPS	~	2		
			TO ZONE 3	
			AT MH 3200	-
PI-IPS1-0	м			
-(PI)	-1			
$\bigcirc$		:		H
M-IPS1-1	0			
(M)		İ		F
7			Ż	
-			,Ţ	
)				C
$\prec$	4.0	P-II	PS3-05 ~ <	
\				
MP				F
			FUTURE	
			PUMP	
				F
				-
-	EQI	JIPM	IENT TAG:-	
		、 ·	· · · · · · · · · ·	Γ
,	Y	Ý	$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$	
	1		1 1	I
			EQUIPMENT NO.	
			IPS – 1	F
			TYPE OF EQUIPMENT	
	L			
				Γ
				Γ
				Γ
				Γ
				r
				Г —
				[ 
				-
				-
				-
		12.08 14		
		12.08.14	SUBMISSION FOR APPROVAL MS	MB AKS
	REV.	DATE	SUBMISSION FOR APPROVAL MS DESCRIPTION DRN.	MB AKS CHKD. APPD.
		DATE	SUBMISSION FOR APPROVAL MS DESCRIPTION DRN. BIHAR URBAN INFRASTRUCTURE DEVEN	MB AKS CHKD. APPD.
	REV. CLIEN	DATE T:-	SUBMISSION FOR APPROVAL MS DESCRIPTION DRN. BIHAR URBAN INFRASTRUCTURE DEVEL CORPORATION LTD., PATNA	MB AKS CHKD. APPD. COPMENT
	REV.	DATE T:-	SUBMISSION FOR APPROVAL       MS         DESCRIPTION       DRN.         BIHAR URBAN INFRASTRUCTURE DEVEL       CORPORATION LTD., PATNA         22 MLD SEWAGE TREATMENT PLANT A	MB AKS CHKD. APPD. COPMENT
	REV. CLIEN PROJE	DATE T:- SCT:-	SUBMISSION FOR APPROVAL MS DESCRIPTION DRN. BIHAR URBAN INFRASTRUCTURE DEVEJ CORPORATION LTD., PATNA 22 MLD SEWAGE TREATMENT PLANT A BIHAR	MB AKS CHKD. APPD. LOPMENT T HAJIPUR,
	REV. CLIEN PROJE	DATE T:- SCT:- ERS NAM	SUBMISSION FOR APPROVAL MS DESCRIPTION DRN. BIHAR URBAN INFRASTRUCTURE DEVEL CORPORATION LTD., PATNA 22 MLD SEWAGE TREATMENT PLANT A BIHAR E:- TRI-TECH (BEIJING) COMPANY LTI	MB AKS CHKD. APPD. LOPMENT T HAJIPUR,
	REV. CLIEN PROJE BIDDI	DATE T:- CT:- ERS NAM: TECH:RENA	SUBMISSION FOR APPROVAL MS DESCRIPTION DRN. BIHAR URBAN INFRASTRUCTURE DEVEJ CORPORATION LTD., PATNA 22 MLD SEWAGE TREATMENT PLANT A BIHAR	MB AKS CHKD. APPD. LOPMENT T HAJIPUR,
	REV. CLIEN PROJE	DATE T:- CT:- ERS NAM: TECH:RENA	SUBMISSION FOR APPROVAL MS DESCRIPTION DRN. BIHAR URBAN INFRASTRUCTURE DEVEL CORPORATION LTD., PATNA 22 MLD SEWAGE TREATMENT PLANT A BIHAR E:- TRI-TECH (BEIJING) COMPANY LTI BEIJING, NEW DELHI	MB AKS CHKD. APPD. LOPMENT T HAJIPUR,
	REV. CLIEN PROJE BIDDI	DATE T:- CT:- ERS NAM	SUBMISSION FOR APPROVAL MS DESCRIPTION DRN. BIHAR URBAN INFRASTRUCTURE DEVEL CORPORATION LTD., PATNA 22 MLD SEWAGE TREATMENT PLANT A BIHAR E:- TRI-TECH (BEIJING) COMPANY LTI BEIJING, NEW DELHI PROCESS & INSTRUMENTATION	MB AKS CHKD. APPD. LOPMENT T HAJIPUR,
	REV. CLIEN PROJE BIDDI TRI TITLE	DATE T:- SCT:- ERS NAM	SUBMISSION FOR APPROVAL MS DESCRIPTION DRN. BIHAR URBAN INFRASTRUCTURE DEVEL CORPORATION LTD., PATNA 22 MLD SEWAGE TREATMENT PLANT A BIHAR E:- TRI-TECH (BEIJING) COMPANY LTI BEIJING, NEW DELHI PROCESS & INSTRUMENTATION DIAGRAM IPS-1	MB AKS CHKD. APPD. LOPMENT T HAJIPUR, ).
	REV. CLIEN PROJE BIDDI TRI- TITLE	DATE T:- CCT:- CCT:- CCT:- CCT:- CCT:- CCT:- ERS NAMI CCT:- E SHEE	SUBMISSION FOR APPROVAL MS DESCRIPTION DRN. BIHAR URBAN INFRASTRUCTURE DEVEL CORPORATION LTD., PATNA 22 MLD SEWAGE TREATMENT PLANT A BIHAR E:- TRI-TECH (BEIJING) COMPANY LTI BEIJING, NEW DELHI PROCESS & INSTRUMENTATION DIAGRAM IPS-1 T DRAWING NO.	MB AKS CHKD. APPD. LOPMENT T HAJIPUR, ).
	REV. CLIEN PROJE BIDDI TRI- TITLE	DATE T:- SCT:- ERS NAM	SUBMISSION FOR APPROVAL     MS       DESCRIPTION     DRN.       BIHAR URBAN INFRASTRUCTURE DEVEL CORPORATION LTD., PATNA       22 MLD SEWAGE TREATMENT PLANT A BIHAR       22 MLD SEWAGE TREATMENT PLANT A BIHAR       E:-     TRI-TECH (BEIJING) COMPANY LTI BEIJING, NEW DELHI       PROCESS & INSTRUMENTATION DIAGRAM IPS-1       TT     DRAWING NO.	MB AKS CHKD. APPD. LOPMENT T HAJIPUR, ).



	3		2			1		
G+1 Rcc Rcc A A A C A A A A A A A A A A A A A A A	22 G+1 5:770 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C2255 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C225 C25 C	MH:1704 GL:49.263 JPS-1 IPS-1 L:42.745 IPS-1 IL:42.745 IL:42.745 IL:42.7398	1761 IL:42 49,156 42.7 2,200 42.4	9.166 8094/ 24/ 24/ 22/ 22/ 22/ 22/ 22/ 22/ 22/ 2	COS D:300mm L14. CO:82 D:300mm L:30.0m L:30.0m CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:83 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 CO:85 C	Bod Harting Bod Get Get		
~								
S.N0.		DESCRIPTIO	JN			METI	ERS	
1		G CHAMBER	CODE:::		2.0			
2	MECHANI CHANNEL	CAL COARSE -	SCREEN	4.5 x	0.62			
3	MANUAL CHANNEL	COARSE SCF	REEN	4.5 x	0.49			F
4		VAGE SUMP	WET	10.0	øx 2.0 S	WD		
5	WELL TRANSFO	RMER AREA		4.0 ×	4.0			
6		CAL PANEL R	00M	4.0 x				
7	DG SET	FOUNDATION		4.0 x				E
8	TOILET			2.0 ×	2.0			
1.) A		 NSIONS AF GROUND					METR	ES.
0 12.	08 14	SUBMISSI	ON FOR APP	PROVAL		MS	мв	AKS
	ATE		ESCRIPTION			DRN.	CHKD.	APPD.
CLIENT:	_	BIHAR URI	BAN INFR CORPORA					NT
PROJEC	^{r: –} 22.0	MLD SEWA	GE TREA BIHA		PLANT A	T H	AJIPUI	R,
BIDDER	S NAME: –	TRI-T	ECH (BE BEIJING	EIJING) G, NEW		NY	LTD.	
DATE: -	12.08.14 :-	TITLE: -	MECH. G		OF INTE STATION		DIATE	
CHKD.: -	-					-1		
APPD.:-	мв	SCALE SHEET			WING NO. 1051/IPS		~	REV.
	AKS	1.100 1 01		эсі/ HJ/	1051/IPS	01 / RJ	(	0




								J
								I
								Н
								G
								F
								E
								D
								С
	٦							
0	1	05.06.14	SUBMISSION FOR APPROVAL	MS	МВ	МВ	AK	s
RE		DATE	DESCRIPTION	DRN.	снкр	REVIEW	APP	D.
CLI	EN	IT:-	BIHAR URBAN INFRASTRUCTURE CORPORATION LTD., F			MENT		
PRO	JI	ECT:-	SEWERAGE NETWORK & 22 MLD STP			R		$\neg$
BIC	DD	ERS NAME:-	TRI-TECH (BEIJING) COMPA	NY L	TD.			
ТІТ	LE	-	BEIJING, NEW DELHI	LINE	ZON	IE -2		
SC/	ALE	SHEET	DRAWING NO.				R	EV.
1:1	000	0 01 OF 07	HJ /1051/SEW/LS/02-A					0

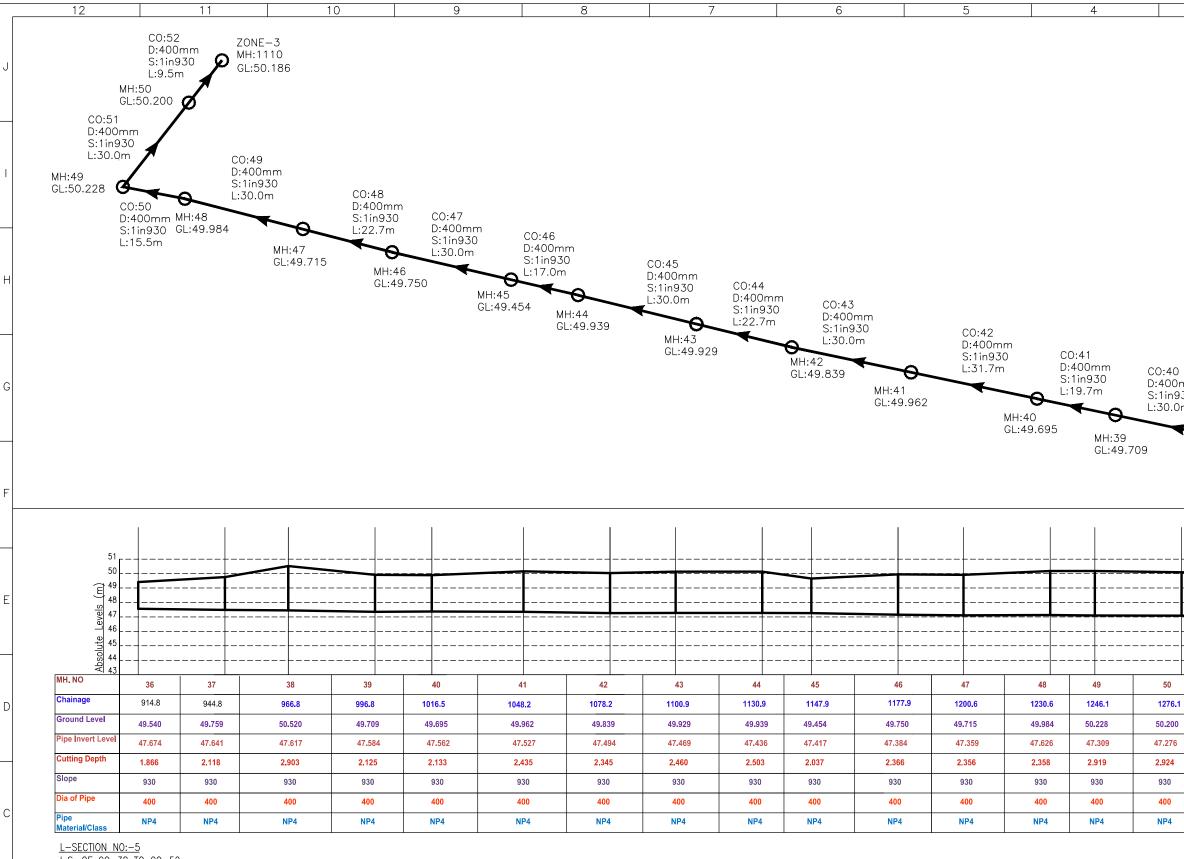


12	1 1	10	9	8	7	6	5	4

		3			2				1			
												J
												I
	CO:19											_
	D:500 L:30.0	mm		CO:20 D:500 L:26.7	mm		CO:2 D:50	0mr	n			
<b>&gt;</b>	->		-0-	L:20.7	(11)	<del>.</del>	L:26	./m		Ð		н
H:18 .:49.873	5		MH:19 GL:49.7	'53		MH:20 GL:49.70	07		N C	1H:21 SL:49.7	724	
												G
												F
												E
												D
												С
	0	05.06.14		SUBMISSIO		ROVAL		MS	MB	MB	AK	
	REV.	DATE				HOVAL				REVIEW	APP	_
	CLIE	NT:-		BIHAR UI		RASTRU				MENT		
	PRO	ECT:-	SEW	ERAGE N						R		_
	BIDD	ERS NAME			HAJIPUR	TOWN						
				I KI-TE		JING) CO NG, NEW		NYL	ID.			
	TITLE	i-	L-SEC	TION FC	R RISIN		PIPF		ZON	E -2		
		-					۲					
		E SHEET 0 02 OF 0	7	Н		VING NO. SEW/LS/	02-A					EV. 0



12	11	10	G G	8	6	5	4	


	3		2			1			
									J
									U
									Ι
0:28		CO:29 D:500	Dmm						н
):500m _:30.0n		L:18.		:3100 50.462					
		-0	•						
		MH:28 GL:49.70	)4						
									~
									G
								ł	
									F
									Е
									_
									D
								ł	
									С
0	05.06.14	SUE	BMISSION FOR APPR	OVAL	MS	MB	MB	AKS	3
REV.							REVIEW	APPI	D.
		BIF	IAR URBAN INFF CORPOR	RASTRUCTURE RATION LTD., F			MENT		
PROJ	ECT:-	SEWER	AGE NETWORK		PLAN	IT FO	R		
BIDD	ERS NAME	÷ Т	RI-TECH (BEIJ		NY L	TD.			
TITLE				G, NEW DELHI					
	-	L-SECTIO	ON FOR RISING	G MAIN PIPE	LINE	ZON	IE -2		
SCAL	E SHEET		DRAWI	NG NO					EV.
	0 03 OF 07	7		EW/LS/02-A					EV. 0
		•							

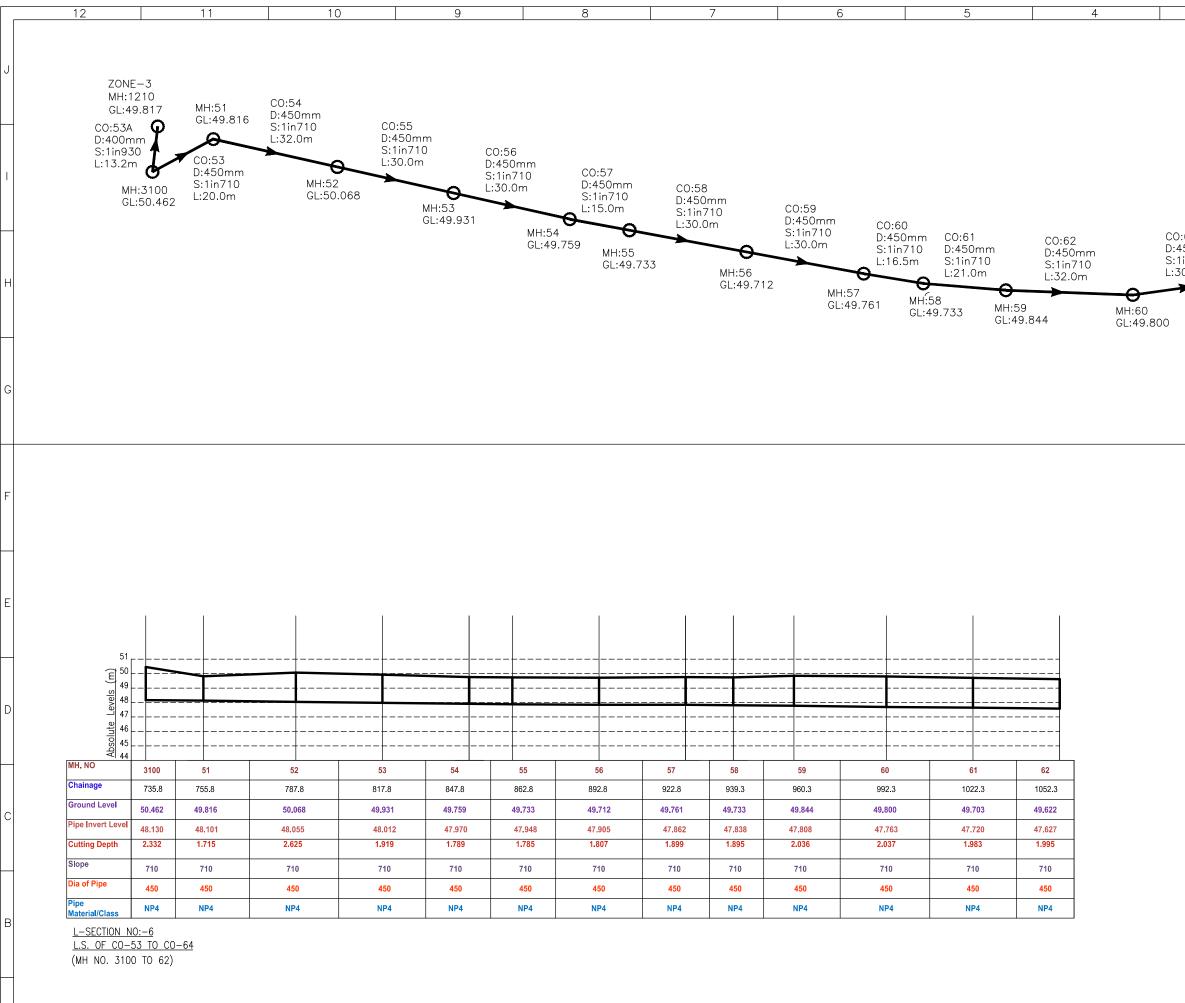
12		11		10	9		8	7	6	5		
CO:3 D:400 S:1in L:9.1 MH:30 GL:49	Im T D: S: L:	3 6 0:36 450mm 1in710 19.0m	C D S	:0:35 0:450mm 5:1in710 :30.0m								
GL:49	9.540	MH:35 GL:49.58		:30.0m	MH:34 GL:49.616	C0:34 D:450mm S:1in710 L:30.0m	MH:33 GL:49.638	C0:33 D:450mm S:1in710 L:30.0m	C0:32 D:450mm S:1in710 L:13.0m MH:32 GL:49.623 MH:31 GL:49.589	C0:31 D:450mm S:1in710 L:25.0m	CO:30 D:450mm S:1in710 L:32.0m	
											MH:30 GL:49.614	
bsolute Levels (m) 20 45 47 42 42 42 42 43 44 45 45 45 45 45 45 45 45 45 45 45 45												
50 49 88 88 84 87 84 84 84 84 84 84 84 84 84 84 84 84 84	3100											
20 <u>Absolute Levels (m)</u> 67 67 69 24 86 65		30 767.8 49.614	31 792.8 49.589	32 805.8 49.623	33 33 835.8 49.638	34 865.8 49.616	895.8	914.8 923.9				
50 (W) 49 48 1979 - 1970 44 45 43 MH. NO Chainage	3100 735.8	767.8	792.8	805.8	835.8	865.8	895.8 49.585	914.8 923.9 49.540 49.596				
50 (H) 49 48 900-1	3100 735.8 50.462	767.8 49.614	792.8 49.589	805.8 <b>49.623</b>	835.8 49.638	865.8 49.616	895.8 49.585 47.901	914.8         923.9           49.540         49.596           47.874         47.664           1.666         1.932				
50 (E) 49 48 50-0-1 46 45 50-0-1 45 50-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51-0-1 51	3100           735.8           50.462           48.130           2.332           710	767.8 49.614 48.085 1.529 710	792.8 49.589 48.049 1.540 710	805.8 49.623 48.030 1.593 710	835.8 49.638 47.987 1.651 710	865.8 49.616 47.944 1.672 710	895.8         49.585         4           47.901         4         4           1.684         710         4	914.8         923.9           49.540         49.596           47.874         47.664           1.666         1.932           710         930				
50 (H) 49 48 900 1 1 1 46 1 2 45 45 44 43 MH. NO Chainage Ground Level Pipe Invert Level Cutting Depth	3100 735.8 50.462 48,130 2.332	767.8 49.614 48.085 1.529	792.8 49.589 48.049 1.540	805.8 49.623 48.030 1.593	835.8 49.638 47.987 1.651	865.8 49.616 47.944 1.672	895.8         4           49.585         4           47.901         4           1.684         7           450         1	914.8         923.9           49.540         49.596           47.874         47.664           1.666         1.932				

12 11 10 9 8 7 6 5

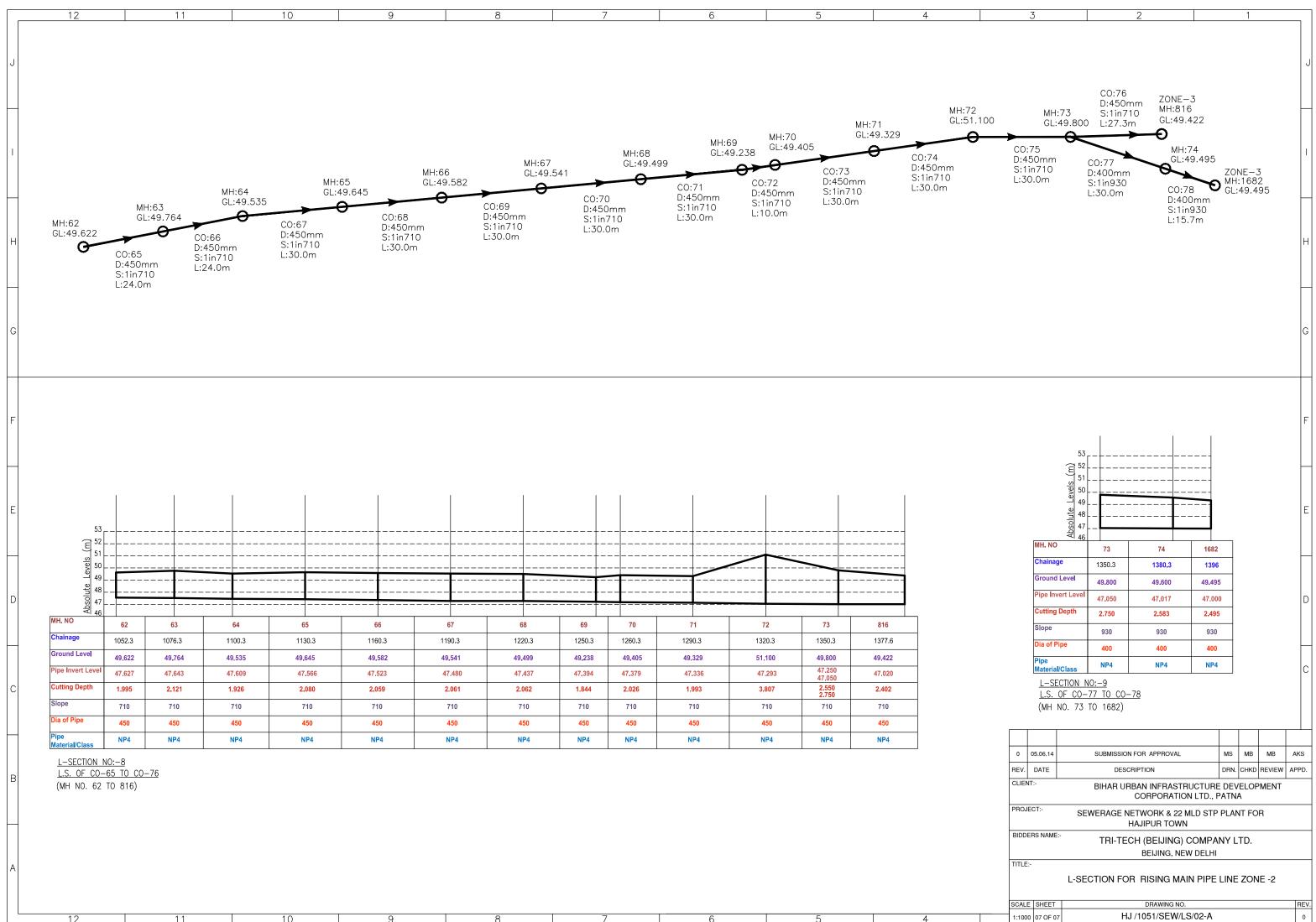
A

		3				2				1			
													J
													н
													G
00 .462	2												
													F
													E
													D
													С
	0 REV.	05.06.14 DATE			SSION F	OR APPE	ROVAL		MS DBN	МВ СНКD	MB REVIEW	AK APF	
	CLIEN				R URB	AN INFI	RASTRI	JCTURE	L E DEV	ELOF		. u r	5.
	PROJ	ECT:-		WERAG									
					HA	JIPUR	TOWN				n		
	וטטוא	ERS NAME		TRI	TECH		ling) C Ig, new		NY L	TD.			
	TITLE	:-		otion	505					70.			
			L-SE	CTION	⊦OR	RISIN	g Main	N PIPE	LINE	ZON	IE -2		

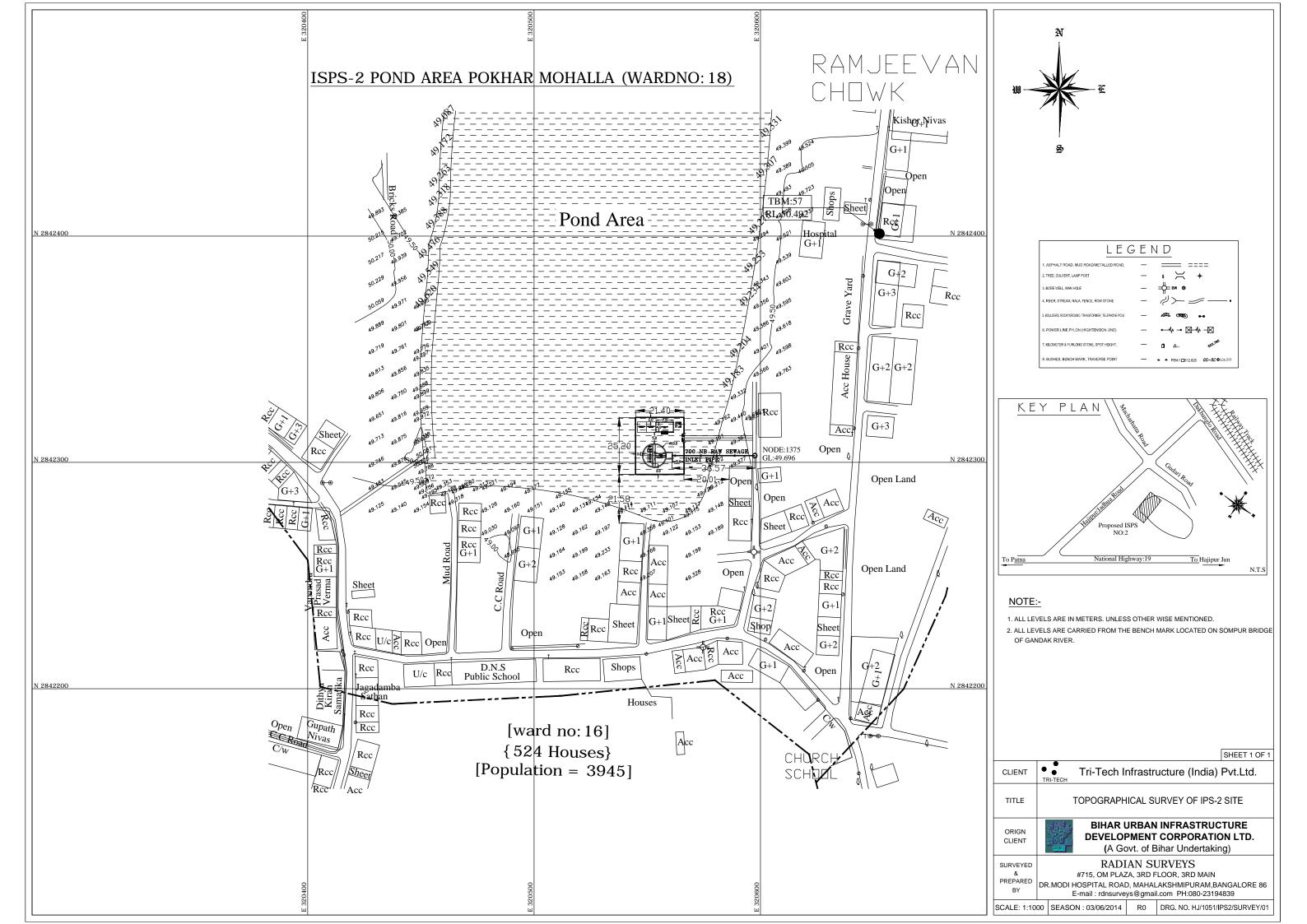


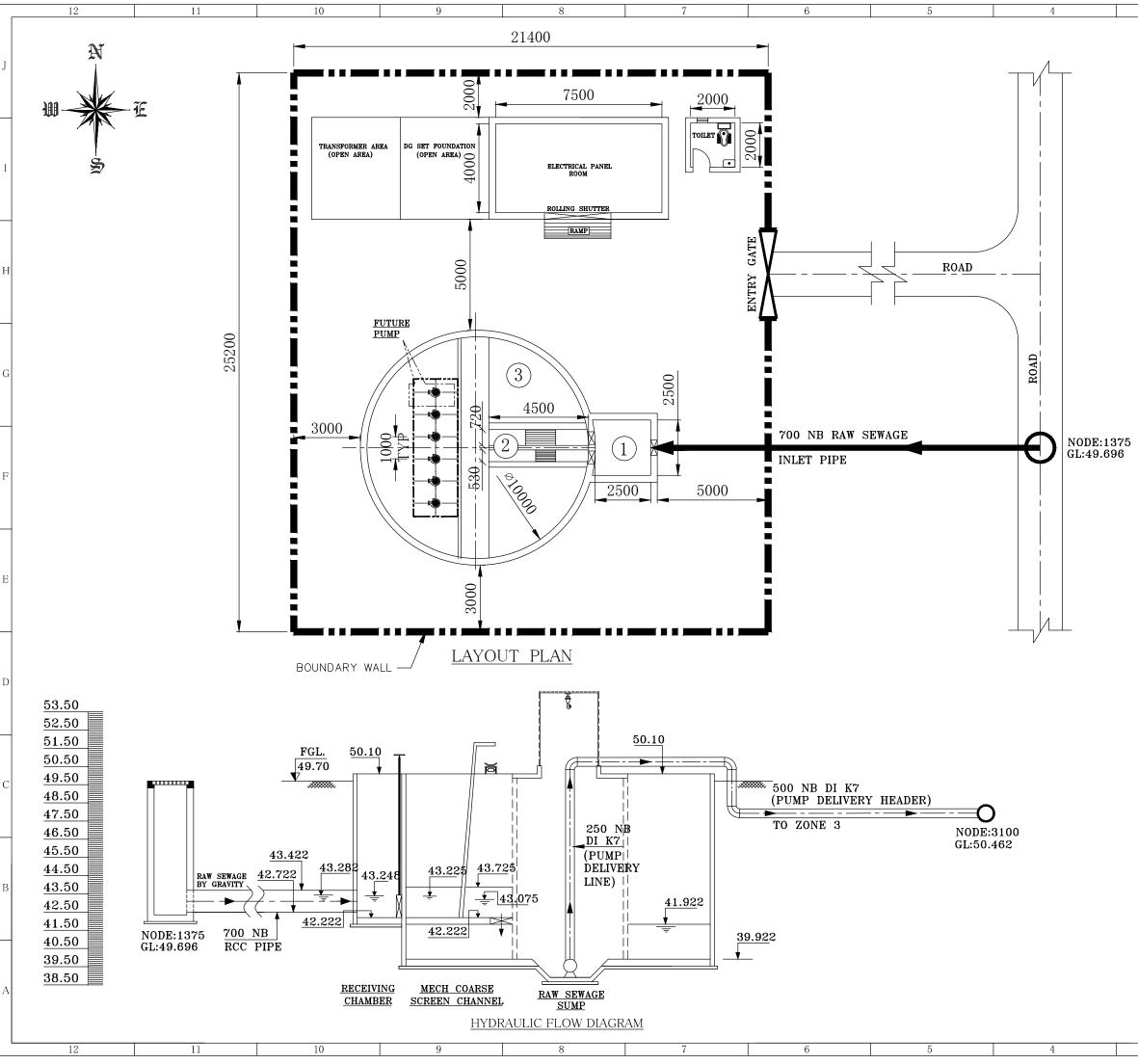

L.S. OF CO-38 TO CO-52

(MH NO. 36 TO 1110)


F

12 11 10 9 8 7 6 5 4


		-									_						
		3						2						1			
																	J
																	1
																	н
mr 30 Im			_	D:4 S:1	:39 100n in93	30			D	0:38	mm	٦					G
	MH: GL:5	38 50.5	<b>5</b> 20			n +:37 _:49		9		:1in9 30.0		_	<b>Đ</b>	/H:3/ GL:49	6 ).540		F
																	E
	11 ¹ 128 50.1 47.2	5.6 186															D
	2.93 93 40 NP	0															С
			Ţ														
	0 REV.	05.0 DA			SUB			OR AF		VAL			MS DRN.	MB CHKD	MB REVIEW	AK APF	
	CLIEN				BIH		JRB	AN IN	IFR/				L E DEV	l 'ELOF	MENT		
	PROJ	ECT:-		SE	WER	AGE	NET		RK &	22 N			PATN PPLAN		R		
	BIDDI	ERSI	NAME:-		TI	RI-TI		I (BE	EIJIN	IG) (			ANY L	TD.			
	TITLE	:-		L-SE	стіс	DN F	OR			, NEV MAI				ZON	IE -2		
	SCALE									G NO.		•				F	REV.
	1:100	0 05	OF 07			ł	ΗJ /'	1051	/SE	W/LS	5/02	-A				1	0

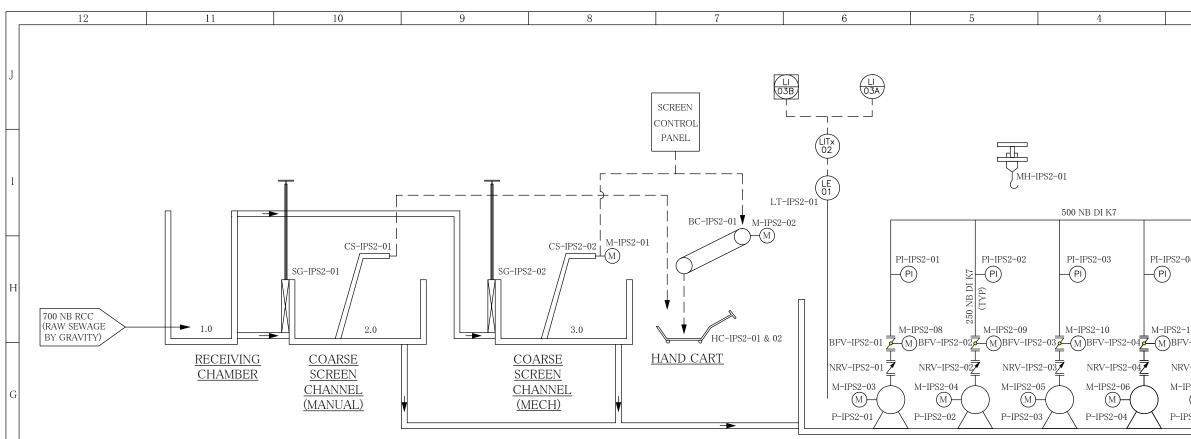



3	2	1	
			J
	CO:64		
:63 150mm	D:450mm S:1in710		
in710 60.0m	L:30.0m		н
MH:61 GL:49.703	MH:62 GL:49.622		
02.10.700			
			G
			F
	^E 49		
			E
MH. NO	<u>२</u> 44 3100 1210		
Chainag	735.6 749		
Ground	50.462 49.817		
Cutting	40.130 40.110		D
Slope	930 930		
Dia of P	pe 400 400		
Pipe Material			С
<u>L.S. (</u>	<u>CTION_NO:-7</u> DF_CO-53A		
(MH N	IO. 3100 TO 1210)		
0 05.06.14	SUBMISSION FOR APPROVAL	MS MB MB	AKS
REV. DATE	DESCRIPTION	DRN. CHKD REVIE	
CLIENT:-	BIHAR URBAN INFRASTRUC CORPORATION		IT
PROJECT:- SE	WERAGE NETWORK & 22 ML HAJIPUR TOWN	D STP PLANT FOR	
BIDDERS NAME:-	TRI-TECH (BEIJING) CO	OMPANY LTD.	
TITLE:-	BEIJING, NEW		
	ECTION FOR RISING MAIN	PIPE LINE ZONE -2	
SCALE SHEET	DRAWING NO.		REV.
1:1000 06 OF 07	HJ /1051/SEW/LS/	02-A	0



12	11	10	9	8	7	6	5	4






	3				2		1			
							2000	49. ¹⁶³		
	# #	<u></u>	SPS-2 PC OKHAR-N WARĐNO	10HALL/			,54 III	**	-E	J
						49 ^{/62} 49. ^A		lcc s		
	2 <del>3</del> 00-			292 292		-NB-RAW SEWAC		pen DE:1375 :49.696		
49.221	 					36/570 0010		+1		
	,9. ¹⁶⁰ A ⁶	15 ¹ 49.	140 49.134°	213		5 49.1 ⁴⁸		Open Ree	FE	Ι
49.0 ³⁰	909 G	11	1 ²⁸ 49.1 ⁶²	49.19 ⁷	Gta 49.122 49.1	⁵⁵ 49. ¹⁸⁹		Sheet		
	G+	2 49.	16 ⁴ 49.19 ⁹ 1 ⁵³ 49. ¹⁵⁸	49.2 ³⁵ 49. ¹⁶³	ACC 49.01 Rcc 9.01 49.3		$n^{\circ}$	Acc	e	
C.C Road		▲9·	49.1°	49·*	Acc Acc					Н
U U			Acc	Rcc SI	heet G+1 Sheet	Rcc G+1	G+	2		
	Or	ben T		Ree		Acc		Acc		
D.I Public	N.S Schoo		Rcc	Sł	nops	xc 8 Ac		+1		
<u>r<del>n 284</del>.</u>	2200			Ľ	EY PLAN		320600	<u> </u>	<u>* 1</u>	G
	й Ц			<u>N</u>	<u>ei flan</u>		Ш Э			G
C N/			DECC		NIT LIST	CIZE IN				F
S.NO		ECE		CRIPT	ION MBER	SIZE IN $2.5 \ge 2.5$		ERS		
2					I CHANNELS	4.5				
3	V	VET	WELL	1		10.0 Ø :	x 2.0	SWD		
4			SFOR			4.0 x 4				P
5					NEL ROOM	4.0 x 7				Е
7		OIL			ATION	4.0 x 4. 2.0 x 2.				
<u>NO</u>	TE:-									D
					AND TERMINATI F TRANSFORME		HT P	OWER		
										С
		1								
0 0:	3.06.14		su	BMISSIO	N FOR APPROVAL		M.S.	AKS	AKS	3
	DATE			DES	CRIPTION		DRN.	СНКД.	APP	D.
CLIENT:			B	IHAR U	URBAN INFRAST CORPORATION			LOPMEN	T	
PROJECT: - 22 MLD SEWAGE TREATMENT PLANT AT HAJIPUR, BIHAR										
BIDDERS NAME - TRI-TECH (BEIJING) COMPANY LTD.										
DATE: -	09.0	SA 8 1.4	TITLE: -		BEIJING, N	IEW DELH	HI			
DRAWN.	03.0 :- м.s		II	PS 2 L	AYOUT PLAN CUM	I HYDRAUI	JC FL	DW DIAG	RAM	
CHKD.: -	AK	S	SCALE	SHEET	D	RAWING NO.			F	REV.
APPD.: -	APPD.: - AS MED 1 OF 1 TT /DET /UI /1051 /IDS2 /A06					~				

AS MKD. 1 OF 1

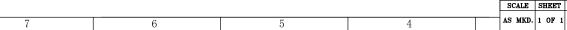
AKS

TT/BEI/HJ/1051/IPS2/A06

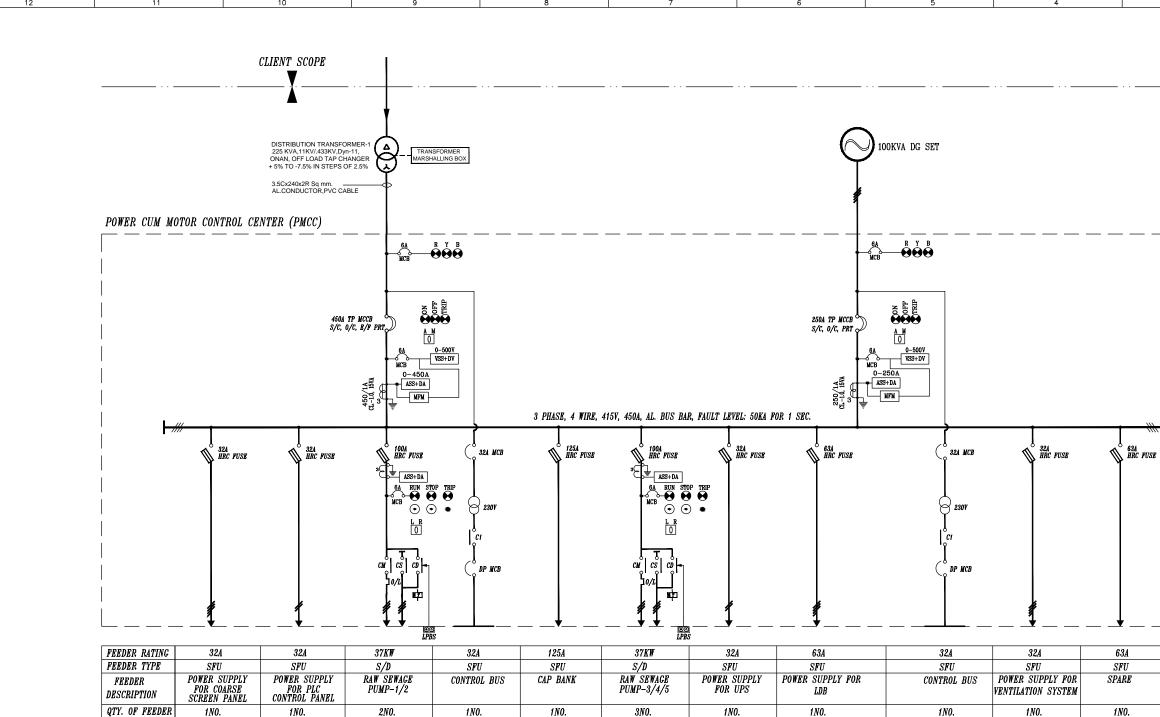


	<u>UNIT LIST</u>							
UNIT NO.	UNIT DESCRIPTION	DIMENSIONS (M)	QTY	MOC				
1.0	RECEIVING CHAMBER	2.5 x 2.5 x 1.026 SWD + 6.852FB	1	RCC				
2.0	MANUAL COARSE SCREEN CHANNEL	4.5 x 0.53 x 1.003 SWD + 0.5 FB	1	RCC				
3.0	MECH COARSE SCREEN CHANNEL	4.5 x 0.72 x 1.003 SWD + 0.5 FB	1	RCC				
4.0	RAW SEWAGE COLLECTION SUMP (WET WELL)	10.0ø x 2.0 SWD + 8.178 FB	1	RCC				

	EQUIPMENT LIST								
TAG NO.	EQUIPMENT DESCRIPTION	SIZE (M) / CAPACITY	QTY	MOC					
CS-IPS2-01	MANUAL COARSE BAR SCREEN	0.325 W x 1.55 HT	1	SS 304					
CS-IPS2-02	MECH COARSE BAR SCREEN	0.43 W x 9.5 HT	1	SS 304					
BC-IPS2-01	BELT CONVEYOR	0.6 W	1	MFG STD					
HC-IPS2- -01/02	HAND CART	0.5 M3	2	MSEP/FRP					
P-IPS2-01/ 02/03/04	RAW SEWAGE TRANSFER PUMPS (W/MOTOR)	240.0 M3/HR x 16.0 MWC	5	AS PER NIT					
M-IPS2-01	MANUAL CHAIN PULLEY HOIST (W/TROLLEY)	3.0 TON	1	MFG STD					


	VALVE/GATE_LIST									
TAG NO.	VALVE/GATE DESCRIPTION	DIMENSIONS (MM)	QTY	MOC						
SG-IPS2- -01/02	MANUAL SLUICE GATE, FLANGE BACK FRAME, WALL THIMBLE	300 x 1200 MM	2	CI (AS PER NIT)						
NRV-IPS2-01/ 02/03/04/05	NON RETURN VALVE, D/F, PN 1.0, SWING CHECK	250 NB	5	CI (AS PER NIT)						
	BUTTERFLY VALVE, D/F, PN 1.0, ELECTRICALLY ACTUATED	250 NB	5	CI (AS PER NIT)						

	INSTRUMENTATION LIST								
TAG NO.	INSTRUMENT DESCRIPTION	SIZE (MM)	QTY	MOC					
PI-IPS2-01/ 02/03/04/05	PRESSURE INDICATOR, DIAPHRAGM	150/100 NB	5	MFG STD					
LS-IPS2-01	LEVEL SWITCH, CONDUCTIVITY TYPE		1	MFG STD					
LT-IPS2-01	LEVEL TRANSMITTER, ULTRASONIC		1	MFG STD					


	LEGENDS:-
	NON RETURN VALVE
	MOTORIZED BUTTERFLY VALVE
$\boxtimes$	GATE
2	SUBMERSIBLE PUMP
$\bigcirc$	LOCAL INSTRUMENT
Ħ	PANEL ALARM
$\square$	SCADA INDICATION
	SCADA ALARM
$\langle \rangle$	HARD WIRE INTERLOCK
	SEWAGE/WATER LINE
	SLUDGE LINE
LSH	LEVEL SWITCH HIGH
LSL	LEVEL SWITCH LOW
LAH	LEVEL ALARM HIGH
PI	PRESSURE INDICATOR

RAW SEWAGE COLLECTION SUMP
(WET WELL)

	<u>LEGENDS:-</u>
LAL	LEVEL ALARM LOW
LE	LEVEL ELEMENT
LI	LEVEL INDICATOR
LITx	LEVEL INDICATOR CUM TRANSMITTER



	3		2		1		
	5				1		
	、						т
K K K			LAL 03B 03A				J
	<u> </u>	- T					
		LSH 02	(LSL) O2 AT LOW LEVEL				
							Ι
	LS-	(LE 01 IPS2-01	)				
					ONE 3 ODE 31	00	
·04	PI-	-IPS2-05					
			PI I				Н
-11	= /	-IPS2-12					
V-IPS2- V-IPS2-	Í	M)					
v 11 32 IPS2-07	Ť						
(M) PS2-05	$\mathcal{A}$	4.0	(M) $(M)$				G
	/	4.0					
			FUTURE				
			PUMP				<b>_</b>
							F
EQI	UIPM	IENT T	AG:-				
$\checkmark$	$\sim$	· ~	$\vee$ $\vee$ $\vee$				
1							
			EQUIPMENT I	NO			E
					_		
			IPS – 2		_		
			TYPE OF EQU	JIPMEN	T		
							D
							С
0	03.06.14		SUBMISSION FOR APPROVAL		MS	A.K.S.	A.K.S.
REV.	DATE		DESCRIPTION		DRN.	CHKD.	APPD.
			BIHAR URBAN INFRASTRU CORPORATION I			LOPME	ΝT
PROJI	ECT:-		22 MLD SEWAGE TREATM BIHAB		ANT A	T HAJI	PUR,
	ERS NAM	E:- TRI-	-TECH (BEIJING) CO		Y LTI	).	
TITLE	-TECH鼎联 y Clean Harmony		BEIJING, NEW DELH				
			PROCESS & INSTRUME		ON		
SCAI	e shei	7T	DIAGRAM IPS- drawing no.	-2			REV.
AS M	KD. 1 OF	1	TT/BEI/HJ/1051/IF	PS2/A0	7		0



NOTES:-

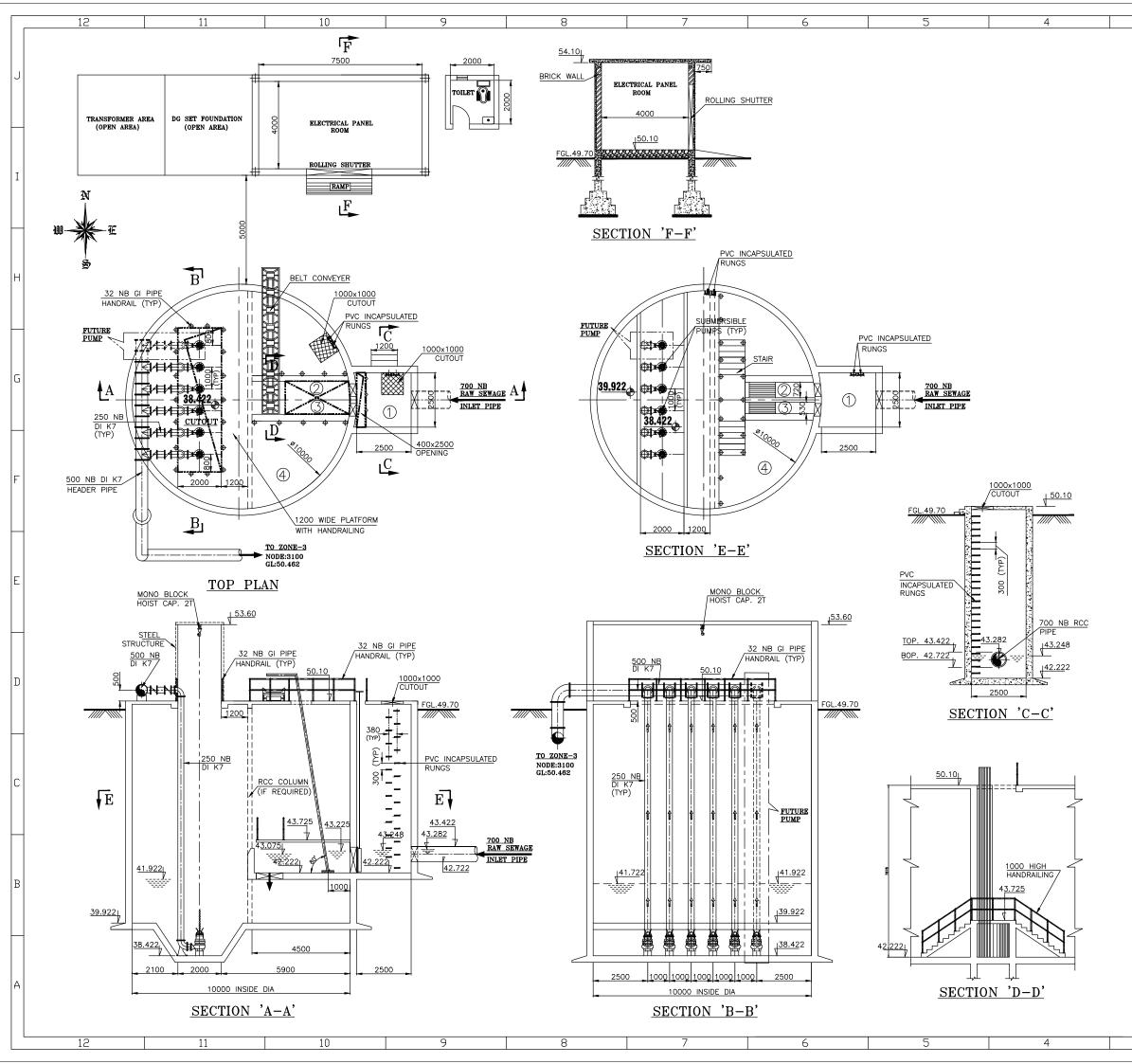
REV. DATE CLIENT:-PROJEC

0 03.06.14

PROJECT	:-	SEWERAGE NETWORK & STP, HAJIPUR
BIDDERS	NAME:-	TRI-TECH (BEIJING) COMPANY LTD.
		BEIJING, NEW DELHI
TITLE:-		
		SINGLE LINE DIAGRAM OF
		POWER CUM MOTOR CONTROL CENTER IPS-2
SCALE	SHEET	DRAWING NO.
AS MKD.	1 OF 1	TT/BEI/HJ/1051/IPS2/A08
		•

SUBMISSION FOR APPROVEL

# UR


DESCRIPTION	DRN.	СНКД.	APPD.
BIHAR URBAN INFRASTRUCTURE		LOPMEN	T
CORPORATION LTD., PA	AT'NA -		

D.S.R. A.K.SONI A.DUTT

REV. 0

1. ALL METERING, PROTECTION & CONTROL SYSTEM SHALL BE AS PER NIT. 2. THE EQUIPMENT SHOWN ARE TENTATIVE AND WILL BE FINALIZED DURING DETAIL ENGINEERING. 3. BUIDCO WILL TERMINATE 33/11 KV HT CABLE CONNECTION TO HT END OF TRANSFORMER.

 	 -



S.NO       DESCRIPTION       SIZE IN METERS         1       RECE Shops       Acc         WCHARDMALLA       2.5 × 2.5         2       Acc         BD.N.S       Rece Shops         BLACE       Acc         BLE       Acc         BLE       Acc         BLE       Acc         BLE       Acc         BLE       Acc         BLE       Acc         BLE </th <th>3</th>	3
Image: No.         DESCRIPTION         SIZE IN METERS           1         RECEIVING CHAMBER         2.5 × 2.5           2         MECHANICAL COARSE SCREEN         4.5 × 0.72           3         MANUAL COARSE SCREEN         4.5 × 0.53           4         RAW SEWAGE SUMP WET         10.0 ø × 2.0 SWD           5         TRANSFORMER AREA         4.0 × 4.0           6         ELECTRICAL PANEL ROOM         4.0 × 4.0           8         TOILET         2.0 × 2.0	
1       RECEIVING CHAMBER       2.5 × 2.5         2       MECHANICAL COARSE SCREEN CHANNEL       4.5 × 0.72         3       MANUAL COARSE SCREEN CHANNEL       4.5 × 0.53         4       RAW SEWAGE SUMP WET WELL       10.0 Ø × 2.0 SWD         5       TRANSFORMER AREA       4.0 × 4.0         6       ELECTRICAL PANEL ROOM       4.0 × 4.0         8       TOILET       2.0 × 2.0         NOTES: —         1.)       ALL DIMENSIONS ARE IN MM. & LEVELS ARE IN METRES.         2.)       FINISHED GROUND LEVEL CONSIDERED 49.70 M.         Improvementation of the submission for approval mission for approvan mission for approvan mission for approval mission for approval mi	E 3205C
CHANNEL       Annual COARSE SCREEN       4.5 x 0.53         3       MANUAL COARSE SCREEN       4.5 x 0.53         4       RAW SEWAGE SUMP WET       10.0 ø x 2.0 SWD         5       TRANSFORMER AREA       4.0 x 4.0         6       ELECTRICAL PANEL ROOM       4.0 x 4.0         8       TOILET       2.0 x 2.0         NOTES: —         1.) ALL DIMENSIONS ARE IN MM. & LEVELS ARE IN METRES.         2.) FINISHED GROUND LEVEL CONSIDERED 49.70 M.         2.) FINISHED GROUND LEVEL CONSIDERED 49.70 M.         2.0       3.06.14         SUBMISSION FOR APPROVAL       MS         0       03.06.14       SUBMISSION FOR APPROVAL       MS	
4       RAW SEWAGE SUMP WET       10.0 Ø × 2.0 SWD         5       TRANSFORMER AREA       4.0 × 4.0         6       ELECTRICAL PANEL ROOM       4.0 × 7.5         7       DG SET FOUNDATION       4.0 × 4.0         8       TOILET       2.0 × 2.0         NOTES: —         1.) ALL DIMENSIONS ARE IN MM. & LEVELS ARE IN METRES.         2.) FINISHED GROUND LEVEL CONSIDERED 49.70 M.         v       a         0       03.06.14       SUBMISSION FOR APPROVAL       MS       AKS       AK         REV.       DATE       DESCRIPTION       DRN. CHKD. APPROVAL       DRN. CHKD. APPROVAL	CHAN MANU
6       ELECTRICAL PANEL ROOM       4.0 x 7.5         7       DG SET FOUNDATION       4.0 x 4.0         8       TOILET       2.0 x 2.0         NOTES: —         1.) ALL DIMENSIONS ARE IN MM. & LEVELS ARE IN METRES.         2.) FINISHED GROUND LEVEL CONSIDERED 49.70 M.         0       03.06.14         SUBMISSION FOR APPROVAL         MS       AKS         REV.       DATE	RAW
8       TOILET       2.0 × 2.0         NOTES: —	ELEC
1.) ALL DIMENSIONS ARE IN MM. & LEVELS ARE IN METRES.         2.) FINISHED GROUND LEVEL CONSIDERED 49.70 M.	
REV. DATE DESCRIPTION DRN. CHKD. APP	ALL DI
REV. DATE DESCRIPTION DRN. CHKD. APP	
CLIENT: - BIHAR URBAN INFRASTRUCTURE DEVELOPMENT CORPORATION LTD., PATNA	NT: —
PROJECT: - 22.0 MLD SEWAGE TREATMENT PLANT AT HAJIPUR, BIHAR	
BIDDERS NAME: - TRI-TECH (BEIJING) COMPANY LTD. BEIJING, NEW DELHI	-TECH鼎联 ty Clean Harmony
DATE: - 03.06.14 DRAWN.: - M.S. DRAWN.: - M.S. DRAWN.: - M.S. DRAWN.: - M.S. - MECH. GA DRG. OF INTERMEDIATE <u>PUMPING STATION-2</u>	VN.:- м.s
CHKD::-         AKS         SCALE   SHEET         DRAWING NO.         F           APPD::-         AKS         1:100         1         0F         1         TT/BEI/HJ/1051/IPS2/B18         F	AKS

M/S TRI-TECH(BEIJING) CO. LTD.



#### BIHAR URBAN INFRASTRUCTURE DEVELOPMENT

CORPORATION LTD., PATNA BIHAR



# **DESIGN BASIS REOPRT OF IPS-3 FOR HAJIPUR**

3/12/2014

# **Contents**

1	Topography, Rainfall, Geography and climate3
2	Salient Features of the project at a glance3
3	Proposed Network Layout4
Z	Zone 14
Z	Zone 24
Z	Zone 34
Z	Zone-4
Z	Zone-54
4	Sewer generation4
5	Contributory Population Peak flow4
6	Flow calculation:5
-	7 IPS-3 Details5
ſ	Van hole No just before receiving chamber : (N-2549c)5
(	Outfall Sewer to Receiving Chamber Invert Level       : 42.548M
F	Population Projection:5
7.1	Ground Water Infiltration and leakage (GWI)6
8	Design Period of Sewerage Pumping station6
9	Coefficient of friction6
Co	efficient of roughness for DI pipe (C): 1406

# I. Background

Hajipur is the headquarters of Vaishali district in the Indian state of Bihar, comes under the Patna Administration Division. Hajipur became the Municipality in the year 2002. The municipal area of Hajipur is about 19.64 sq. km. It is famous for producing bananas.

The town Hajipur is situated on the banks of River Gandak. The river Gandak flows from North to South Direction.



# 1 Topography, Rainfall, Geography and climate

The topography of the town is that of a flat plain area. The mean annual rainfall is 1203 mm mostly confined to monsoon season and with maximum temperature during summer between  $41.7^{\circ}$ C and minimum temperature of  $5.6^{\circ}$ C during winter season.

# 2 Salient Features of the project at a glance

Programme:	National Ganga River Basin Authority (NGRBA)			
Project:	Sewerage Project, Hajipur			
Project Town:	HajipurDistrict:Vaisali			
Area:	1993.23 Ha	Population, 2001:	119,412	
Av Annual Rainfall:	1203 mm	Households:	17050	
Max Temperature:	Temperature: <b>41.7oC</b>		5.6ºC	

# 3 Proposed Network Layout

Keeping the concept of minimum depth, as per the Tender Document concept, town is divided in Five Zones. Ward wise population are given below table.

#### Zone 1

It will receive wastewater from whole of the north-western area and South-Western area. In node diagram, Pumping Station No 1 is proposed at node 2535. The wastewater collected from this zone is pumped to Node No 26 of zone-3. In this zone there are 8 wards are there i.e., 1, 2, 3, 4, 5, 6, 7& 8. The collected wastewater is pumped to zone 3.

#### Zone 2

It will receive wastewater from southern area of town. Pumping Station No 2 is proposed at node 1593. The wastewater collected from this zone is pumped to Node No 816 of zone-3. This is a big zone compare to all other zones, in this zone there are 17 wards are there i.e., 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 24, 27, 29, 30, 31 & 33.

#### Zone 3

It will received combined sewage generated from Zone 1/2/3. Pumping Station No 3 is proposed at node 2549. The wastewater collected from this zone is pumped to Node No 41in Zone 5. In this zone there are 6 wards are there i.e., 19, 20, 21, 22, 23, & 25

#### Zone-4

It will receive wastewater from southern area of town. Pumping Station No 4 is proposed at node 1869. The wastewater collected from this zone is pumped to Node No 2322B in zone no 5. In this zone there are 7 wards are there i.e., 28, 32, 34, 35, 36, 37, 38 &39

#### Zone-5

This zone is contains only 2 wards that is ward no: 25 and ward no: 38, the ward no:25 is partially covered in this zone. It will receive wastewater from whole of the north-East area.

### 4 Sewer generation

According to the CPHEO manual **Para 3.2.4.** of manual stipulate that generally 80% of the water supply may be expected to reach the sewers unless there is data available to the contrary.

• <u>Per capita water supply</u> figure of 135 LPCD with 80% contributing to wastewater is adopted to arrive at expected wastewater flows in sewers.

# 5 Contributory Population Peak flow

Sl. No	Contributing Population	Peak Factor
1	Up to 20,000	3

2	20,000 - 50,000	2.5
3	50,000 - 75,0000	2.25
4	Above 75,0000	2

# **6** Flow calculation:

Average flow	=	Total population x 135 x 0.8/3600/24
Peak flow	=	(Average flow*PF + GWI)

# 7 IPS-3 Details

Man hole No just before receiving chamber	:	(N-2549c)
GL of 2549c	:	48.29M
GL of IPS-3	:	47.737M
GL of disposing point manhole 41B (at Zone-5)	:	50.000M
Outfall Sewer to Receiving Chamber Invert Leve	el:	42.548M
Outfall Sewer Diameter	:	1000 mm
Raw Sewage Sump Invert Level	:	39. <mark>948M</mark>

## **Population Projection:**

For complete Town (Including all 5 zones)

S.N.	Year	Population projection	Factor of increment of Population
1	2011	152979	-
2	2026	217992	1.424
3	2041	305494	1.4

Multiple Factor by which population increase form year 2011 to year of 2026 = 1.424

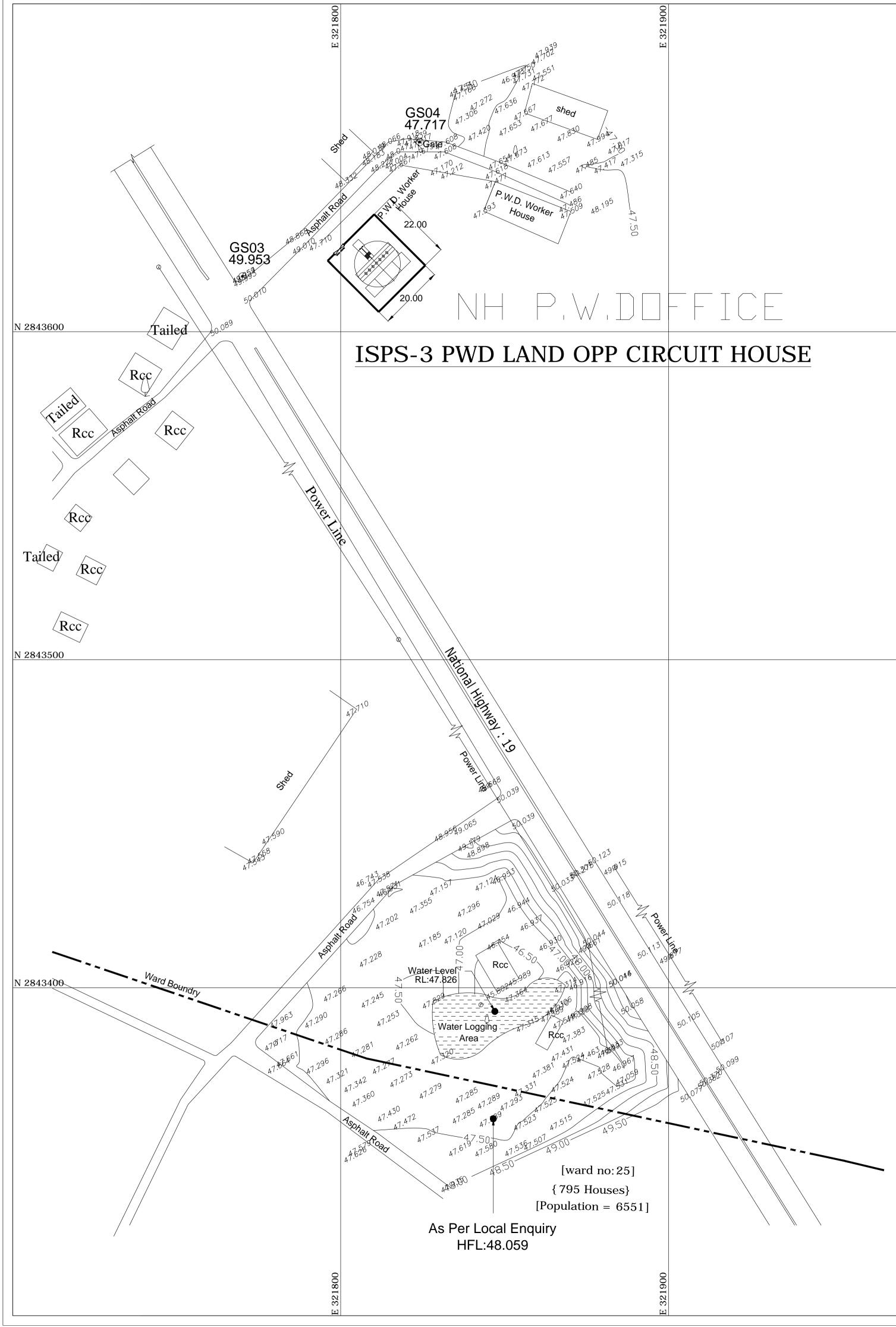
#### **POPULATION FOR ZONE-3:**

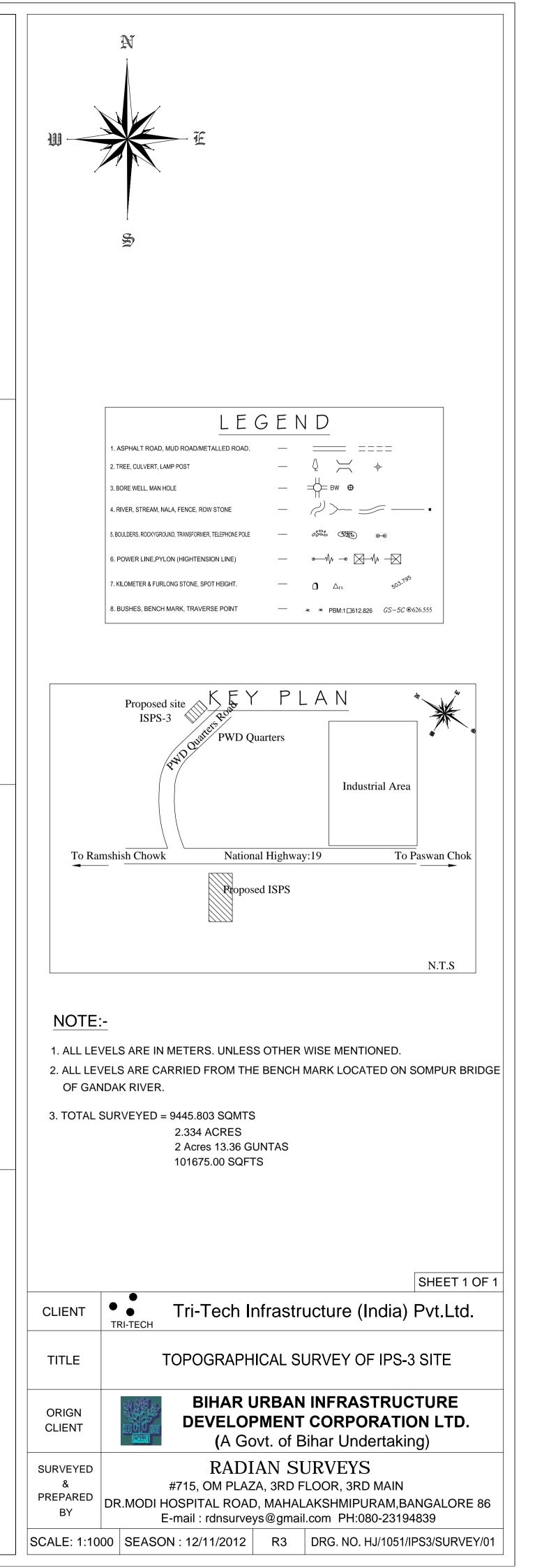
S.N.	Year	Population (as per Approved zone-4)	GWI	Design Average flow	Design Peak flow	
1	2011	112167	5.626	141.106	323.115	Peak flow =
2	2026	159726	5.626	199.657	404.94	(Avg flow*pf+GWI)
3	2041	223708	5.626	281.978	640.077	

### 7.1 Ground Water Infiltration and leakage (GWI)

Some quantity of ground water or subsoil water may infiltrate into sewers through defective joints, broken pipes etc. This is significant when water table is high and head of ground water is more than the head of sewage in sewers. Some quantity of sewage may leak out from defective joints and defective pipes when head of sewage is more in sewers than head of ground water outside. Infiltration and leakage mainly depends on quality of construction and water table levels. Infiltration can be considered, **Para 3.2.7** Manual, 5000-50000 liters per day per hectare or 500-5000 liters per day per km length of sewers or 250-500 liters per day per manhole for sewers laid below ground water level.

As the project town is situated on the banks of River Ganga, the water table in the town is very much near the ground. Looking to possibility of infiltration of ground water, it is proposed to adopt strict quality control measures for material & workmanship. However, a provision of infiltration in sewers is adopted as 500 litre/manhole/day.


Sl. No	Design Component	Design Period	Remarks
1	Pumping mains	30 Years	Cost may be economical
2	Pumping Stations-Civil Work	30 Years	
3	Pumping Machinery	15 Years	Life of pumping machinery is 15 years


### 8 Design Period of Sewerage Pumping station

# 9 Coefficient of friction

Sr. No.	Type of fitting	K value
1	Bend	0.32
2	NRV	2.5
3	VALVES	0.8
4	EXPANDOR	0.5

Coefficient of roughness for DI pipe (C) : 140





Owner	: Bihar Urban Infrastructure Development Corporation Ltd. Patna		
Project	: Sewerage Network and 22 MLD STP Plant For Hajipur Town		
Contractor	: Tri-Tech (Beijing) Company Ltd. Beijing (New Delhi)		
Doc. Name	: Sizing Calculation for IPS-3		
Doc. No.	: TT/BEI/HJ/1051/IPS3/A01	REV. 03	DT. 13.03.2014

# **1.0 SEWAGE GENERATION**

Intermediate Pumping Station No. 3 is designed for the following sewage flow rate:

# Design Year 2026

Average Flow Rate Peak Flow Rate	:	(Avg. design flow + Infiltration) (199.657+5.657) LPS i.e. $0.205 \text{ M}^3/\text{s}$ 738 M ³ /Hour 17712 M ³ /Day i.e. 17.712 MLD (Peak design flow + Infiltration) (199.657*2.0+5.657)=404.9LPS i.e. 0.405 M ³ /s <b>1458.0 M³/Hour</b>
Design Year 2041		
Average Flow Rate	:	(Avg. design flow + Infiltration) (281.98+5.626) LPS i.e. $0.288 \text{ M}^3/\text{s}$ 1036.8 M ³ /Hour
Peak Flow Rate	:	(Peak design flow + Infiltration) 640.077 LPS i.e. $0.640 \text{ M}^3/\text{s}$ 2304.0 M ³ /Hour M ³ /Day i.e. 55.296 MLD

# 2.0 RECEIVING CHAMBER

No.	:	1
Material of Construction	:	RCC
Year 2041 Peak Flow Rate	:	$0.640 \text{ M}^3/\text{s}$
Plan Dimensions	:	2.5 M x 2.5 M
Side Water Depth	:	1.24 M
Volume	:	2.5 x 2.5 x 1.24 i.e. 7.75 M ³
Hydraulic Retention Time	:	7.75 / 0.640 i.e. 12.12 s

#### 3.0 MECHANICAL COARSE BAR SCREEN CHANNEL

No. Material of Construction Design Basis Angle of Inclination Length Side Water Depth Inclined Submerged Screen Length		1 (Working) RCC, with SS 304 Coarse Bar Screen Year 2041 Peak Flow i.e. 0.640 M ³ /s 80 ⁰ 4.5 M 1.2 M (1.2 / Sin 80 ⁰ ) i.e. 1.22 M
Velocity (through Screen at Peak Flow, NIL Clogging)	:	1.0 M/s
Clear Width	: i.e.	0.640 M ³ /s / (1.22 M x 1.0 M/s) 0.525 M
Clear Spacing No. of Openings	:	25 MM 0.525 M/ 0.025 M
1 0	i.e.	20.98, say 21
No. of Bars Bar Size	:	21 + 1 i.e. 22 10 MM x 50 MM
Screen Channel Width (Minimum)	: i.e.	(20 x 0.025) + (21 x 0.01) 0.71, say <b>0.710 M</b>
Side Margin for Operating Mechanism	:	0.29 M
Screen Channel Width (Overall) Screen Height	: : :	0.610 + 0.29 i.e. 1.00 M SWD (U/s) + FB (U/s) + Conveyor Height + 0.5 M + 0.3 M (Safety Factor) i.e. 1.2+7.039 + 0.6 + 0.5 + 0.3 = 9.45 M say 9.5 M (Minimum)
Head Loss (Design) Operation Service Accessory Equipment	:	0.15 M Automatic (Timer Controlled) Continuous/ Intermittent Electric Motor/ Drive Mechanism w/ Mechanical Travelling Rakes/ Control Panel/ Belt Conveyor (w/ Electric Motor and Drive Arrangement)/ MSEP/ FRP Wheel Barrows (2 Nos.)

Notes:

1. Due to difficulty associated with underground construction of deep Screen Channels of narrow width, the Screen Channel will be constructed at below Ground Level on a RCC Platform covering portion of the Raw Sewage Collection Sump (Wet Well). The Conveyor Belt will be installed at the Raw Sewage Collection Sump (Wet Well) Top of Structure Level i.e. 0.5 M above Ground Level.

- 2. Screenings will be mechanically collected on to a Conveyor Belt and then disposed off mechanically by gravity to Wheel Barrow at Ground Level.
- 3. The Belt will start automatically when the Mechanical Screen starts and will stop automatically after a lag period of 60 seconds after the Mechanical Screen stops.
- 4. Height of Screen/ Conveyor Belt are subject to modification depending on Manufacturer Specifications.

#### **Inlet Isolation Sluice Gate**

No.	:	1
Туре	:	Flange Back Frame Thimble Mounted,
		Rising Spindle, Flush Bottom Closure
Design Standard	:	IS: 13349
Material of Construction	:	Cast Iron
Peak Flow Rate	:	$0.640 \text{ M}^3/\text{s}$
Size	:	800 MM x 800 MM
Velocity (at Peak Flow)	:	0.640 / (0.8 x 0.8) i.e. 1.00 M/s
Operation	:	Manual

Note: Outlet Isolation Sluice Gates are not required as the screened sewage will directly free fall to Raw Sewage Collection Sump (Wet Well) below the Mechanical Coarse Screen Channel through bottom perforations at the outlet end of the channel.

#### 4.0 MANUAL COARSE BAR SCREEN CHANNEL

No.	:	1 (Stand-By)
Material of Construction	:	RCC, with SS 304 Coarse Bar Screen
Design Basis	:	Year 2041 Peak Flow i.e. 0.640 M ³ /s
Angle of Inclination	:	$60^{0}$
Length	:	4.5 M
Side Water Depth	:	1.2 M
Inclined Submerged Screen	:	$(1.2 / Sin 60^{\circ})$ i.e. 1.385 M
Length		
Velocity (through Screen	:	1.0 M/s
at Peak Flow, NIL Clogging)		
Clear Width	:	0.640 M ³ /s / (1.385 M x 1.0 M/s)
	i.e.	0.462 M
Clear Spacing	:	25 MM
No. of Openings	:	0.462 M/ 0.025 M
	i.e.	18.48, say 19
No. of Bars	:	19 + 1 i.e. 20
Bar Size	:	10 MM x 50 MM

Screen Channel Width	:	(19  x  0.025) + (20  x  0.01)
	i.e.	0.675,
Consider side margin for Operation	:	0.2 M
Total Screen channel width	:	0.675 +0.2 i.e. 0.875M say 0.88 M
Screen Height	:	SWD $(U/s)$ + FB $(U/s)$ i.e. $1.2 + 0.5 = 1.7$ M
Head Loss (Design)	:	0.15 M
Operation	:	Manual
Service	:	Intermittent
Accessory Equipment	:	MSEP Rakes (2 Nos.)/ Bucket Chain Pulley Screenings Removal Arrangement

Notes:

- 1. Due to difficulty associated with underground construction of deep Screen Channels of narrow width, the Screen Channel will be constructed at below Ground Level on a RCC Platform covering portion of the Raw Sewage Collection Sump (Wet Well).
- 2. Screenings will be manually raked on to a RCC Perforated Platform and then transferred to Raw Sewage Collection Sump (Wet Well) Top of Structure Level through Bucket Chain Pulley Arrangement and disposed off manually to Hand Cart at Ground Level.

### **Inlet Isolation Sluice Gate**

No.	:	1
Туре	:	Flange Back Frame Thimble Mounted,
		Rising Spindle, Flush Bottom Closure
Design Standard	:	IS: 13349
Material of Construction	:	Cast Iron
Peak Flow Rate	:	$0.640 \text{ M}^3/\text{s}$
Size	:	800 MM x 800 MM
Velocity (at Peak Flow)	:	0.640 / (0.8 x 0.8) i.e. 1.00 M/s
Operation	:	Manual

**Note:** Outlet Isolation Sluice Gate is not required as the screened sewage will directly free fall to Raw Sewage Collection Sump (Wet Well) below the Mechanical Coarse Screen Channel through bottom perforations at the outlet end of the channel.

# 5.0 RAW SEWAGE PUMPING STATION

Raw Sewage Collection Sump (Wet Well)

No. Material of Construction Peak Flow Rate Hydraulic Retention Time (at Peak Flow) Volume (Required) Let Side Water Depth Plan area required for wet well Diameter required for wet well <b>Diameter (Provided)</b> Volume (Provided) Hydraulic Retention Time (at Peak Flow)		1 RCC 0.640 $M^3/s$ 7.5 Minutes 0.640 x 60 x 7.5 i.e. 288 $M^3$ 2 M 144.0 $M^2$ 13.50 M <b>14.0 M</b> $\Pi/4 x 14.0 x 14.0 x 2$ i.e. 307.8 $M^3$ 307.8/ (0.640 x 60) i.e. 8.0 Min, i.e. OK
Accessory	:	Ultrasonic Level Sensor (Linked to PLC/ SCADA)
Raw Sewage Transfer Pumps		SCADAJ
Nos.	:	5 (4 Working + 1 Stand-By – Peak Flow) 5 (2 Working + 3 Stand-By – Average Flow)
Design Basis	:	Year 2026 Peak Flow i.e. <b>1458.0</b> M ³ /Hour
Capacity	:	<b>1458.0</b> / 4 i.e. 364.5 say <b>365.0</b> M ³ /Hour
Discharge Head	:	14.0 MWC Submarzible Nen Cleg, Wat, Wall
Туре	•	Submersible Non Clog, Wet Well Installation
Operation	:	Automatic (Controlled by Ultrasonic Level Sensor, linked to PLC/ SCADA)
Material of Construction		
Casing	:	Cast Iron
Impeller Shaft/ Fasteners/ Foundation Bolts	•	Stainless Steel ASTM A 743 CF8M Stainless Steel 316
Guide Rail	:	Stainless Steel SS 304
Accessory Equipment	:	Submersible Electric Motors/ Lifting Chains/ Guide Rails
Individual Pump Delivery Lines		
Size Design Velocity Material of Construction Accessory Equipment	:	300 NB 365.0/3600/ (П/4 x 0.3 x 0.3) i.e. 1.44 M/s DI K7 Non Return Valve/ Butterfly Valve

#### Combined Pump Delivery Header

Design Flow	:	365.0 x 4 i.e. 1460.0 M ³ /Hour
Size	:	700 NB
Design Velocity	:	1460.0/ 3600/ (Π/4 x 0.7 x 0.7)
	i.e.	1.05 M/s
Material of Construction	:	DI K7

Dry Well

Note: The Dry Well be constructed above the Raw Sewage Collection Sump (Wet Well) and will be used for access to the Submersible Pumps for operation and maintenance as required.

No.	:	1
Material of Construction	:	RCC Slabs/ Walkways w/ Hand Railing
Accessory	:	3.0 Ton Capacity Manual Chain Pulley
		Hoist with ISMB

## **Pump House Electric Panel Room**

No.	:	1
Material of Construction	:	RCC Slabs/ Columns, Brick Masonry Side
Walls as applicable		
Plan Dimensions	:	4.0 M x 7.5 M
Height	:	4.0 M

Owner Projec Contra Doc. N	ct : Sewerage Network and 22 MLD STP Plant For Hajipur Town ractor : Tri-Tech (Beijing) Company Ltd. Beijing (New Delhi)			а
Doc. N	o. : TT/BEI/HJ/1051/IPS3/A02	REV. 03	DT. 12.03.20	014
S.NO.	PARAMETER		VALUE	UNIT
1.0	DESIGN FLOWRATE			
	Peak Flow Rate, Q _P	:	55.296	MLD
		:	2304.000	M ³ /Hr
		:	0.640	M ³ /s
2.0	RECEIVING CHAMBER			
	Outfall Sewer to Receiving Chamber Invert Level	:	42.548	М
	Say	:	42.548	М
	Outfall Sewer Diameter	:	1.000	М
	Outfall Sewer Soffit Level	:	43.548	М
	IPS 3 Finished Ground Level (Considered)	:	50.000	М
	Height, Top of Receiving Chamber	:	0.300	М
	Receiving Chamber Top of Structure Level	:	50.300	М
	Outfall Sewer Capacity, QP	:	2304.000	M ³ /Hr
		:	0.640	M ³ /s
	Sewage Level in Outfall Sewer (Considered)	:	80.000	%
		:	0.800	М
	Outfall Sewer Top Water Level	:	43.348	М
	Outfall Sewer Wetted Cross Section Area, A			
	Triangle Portion			
	Triangle Height, H	:	0.300	М
	Subtended Angle, $\theta$ = Cos -1 (H/ (D/2))	:	53.130	0

S.NO.	PARAMETER		VALUE	UNIT
	Triangle Base, B = ((((D/2)^2) - (H^2))^0.5)*2	:	0.800	М
	Triangle Area, A ₁ = 0.5 * H * B	:	0.120	$M^2$
	Circle Segment Portion			
	Subtended Angle, $\theta_1 = 360^0 - (\theta * 2))$	:	253.740	0
	Outfall Sewer Wetted Circular Cross Section Area, $A_2$	:	0.554	$M^2$
	Outfall Sewer Wetted Cross Section Area, A = $A_1+A_2$	:	0.674	$M^2$
	Outfall Sewer Design Flow Rate, $Q_D$	:	0.640	M ³ /s
	Outfall Sewer Velocity, $V = Q_D / A$	:	0.950	M/s
	Velocity Head, V ² /2g	:	0.046	М
	Exit Head Loss Co-Efficient, K	:	1.000	
	Exit Head Loss, K * V ² /2g	:	0.046	М
	Receiving Chamber Top Water Level	:	43.302	М
	Say	:	43.302	М
	Gap, Sewer Pipeline IL - Receiving Chamber IL	:	0.500	М
	Receiving Chamber Invert Level	:	42.048	М
	Receiving Chamber Side Water Depth	:	1.254	М
	Free Board	:	6.998	М
3.0	MECHANICAL COARSE SCREEN CHANNEL			
	Inlet Sluice Gate Width, W	:	0.800	М
	Inlet Sluice Gate Side Water Depth, Z	:	0.800	М
	Velocity (across Sluice Gate), V = Q _P / W*Z	:	1.000	M/s
	Velocity Head V ² / 2g	:	0.051	М
	kkkm	:	0.800	
	Head Loss across Sluice Gate, K * V ² / 2g	:	0.041	М
	Say	:	0.041	М
	Coarse Screen Channel Top Water Level (U/s)	:	43.261	М
	Say	:	43.261	

S.NO.	PARAMETER		VALUE	UNIT
	Coarse Screen Channel Invert Level	:	42.048	М
	Coarse Screen Channel Side Water Depth (U/s)	:	1.213	Μ
	Head Loss across Coarse Screen (Refer Process Calculations)	:	0.150	М
	Coarse Screen Channel Top Water Level (D/s)	:	43.111	М
	Free Board (To Top of Screen Channel)	:	0.500	М
	Coarse Screen Channel Top of Structure Level	:	43.761	М
	Wet Well Top of Structure Level	:	50.300	М
	Free Board (To Top of Wet Well)	:	7.039	М
	Say	:	7.039	М
	IPS 3 Finished Ground Level	:	50.000	М
4.0	RAW SEWAGE SUMP (WET WELL)			
	Coarse Screen Channel Invert Level	:	42.048	М
	Free Fall, Fine Screen Channel IL - Raw Sewage Sump TWL	:	0.300	М
	Raw Sewage Sump Top Water Level	:	41.748	М
	Raw Sewage Sump Side Water Depth	:	2.000	М
	Raw Sewage Sump Invert Level	:	39.748	М
	Finished Ground Level	:	50.000	М
	Dry Well Plinth Level	:	50.300	М
	Height, Dry Well Plinth Level (Above Ground)	:	0.850	М
	Raw Water Sump Top of Structure Level	:	50.300	М
	Raw Water Sump Free Board	:	8.552	М

Owner	: Bihar Urban Infrastructure Development Corporation Ltd. Patna					
Project	: Sewerage Network and 22 MLD STP Plant For Hajipur Town					
Contractor	: Tri-Tech (Beijing) Company Ltd. Beijing (New Delhi)					
Doc. Name	: IPS-3 Plant Automation Philosophy					
Doc. No.	: TT/BEI/HJ/1051/IPS3/A03	REV. 02	DT. 18.09.2013			

(Refer Process & Instrumentation Diagram Drawing No. TT/BEI/HJ/1051/IPS3/A07).

### GENERAL DESCRIPTION

Each Electrical Drive of the Intermediate Pumping Station can be controlled as follows:

- 1.0 Through Local Push Button START/ STOP Station installed locally near the drive when in LOCAL Mode.
- 2.0 Through the Motor Control Center (MCC).
- 3.0 Through PLC/ SCADA installed in the Control Room when MCC is in REMOTE Mode. In REMOTE MANUAL Mode the Electrical Drive can be operated manually through Soft Keys on the SCADA Screen. In REMOTE AUTO Mode the Electrical Drive will START/ STOP automatically through software already installed in the PLC.

Details of Plant Automation pertaining to specific units are as follows:

### MECHANICAL SCREEN CHANNEL

- 1.0 Inlet Gate will be manually operated.
- 2.0 Mechanical Coarse Screen/ Conveyor Belt will be Timer Operated. Timer setting will be 0 30 minutes for Cycle time 30 minutes. Conveyor Belt will automatically stop after a Lag Period of 60 seconds following Mechanical Screen Stop.

#### RAW SEWAGE SUMP WET WELL

- 1.0 Raw Sewage Transfer Pumps will be operated through PLC SCADA linked to Ultrasonic Level Sensor. During rising Sump Level 1 No. Raw Sewage Transfer Pump will come in to operation at Low Level 1 of the Sump Wet Well. A second Pump will come in to operation at Low Level 2. A third Pump will come in to operation at High Level 1. A fourth Pump will come in to operation at High Level 2. The operating sequence of the Raw Sewage Transfer Pumps will be rotated weekly through PLC SCADA. During decreasing Sump Level the operating sequence will be reversed.
- 2.0 Individual Pump Delivery Electrically Actuated Butterfly Valves will automatically OPEN at PUMP START and automatically CLOSE at PUMP STOP.

- 3.0 Pump(s) in operation will be tripped automatically through Level Switch Hard Wire Interlock at Low Low Level in the Sump Wet Well.
- 4.0 Alarm will sound in the Control Panel at Sump Wet Well High High Level and Low Low Level activated by Ultrasonic Level Sensor.
- 5.0 Alarm will sound in the Control Panel at Sump Wet Well High High Level and Low Low Level activated by Level Switch.

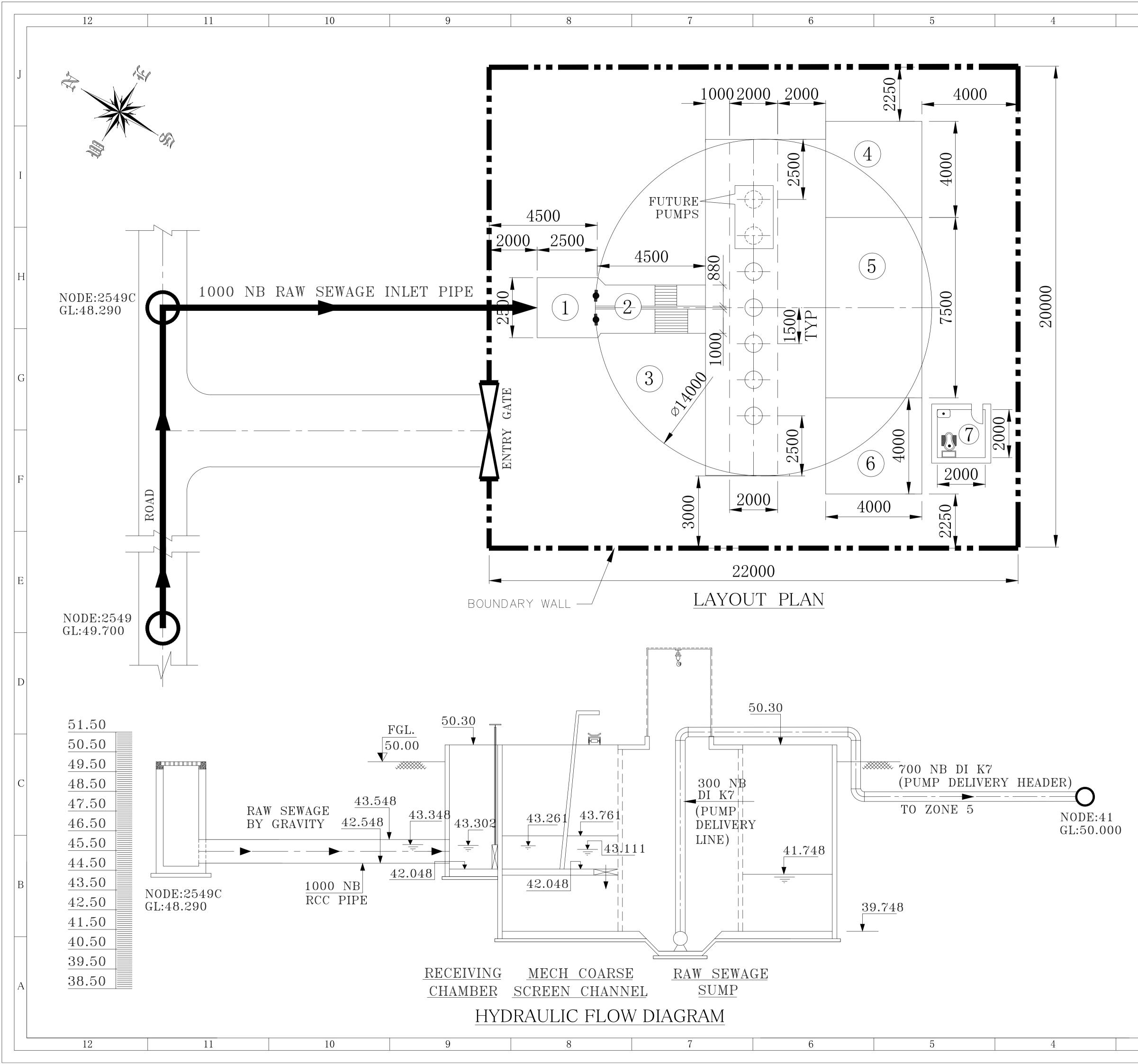
Owner	: Bihar Urban Infrastructure Development Co	orporation Lto	l. Patna	
Project	: Sewerage Network and 22 MLD STP Plant F	or Hajipur To	own	
Contrac	tor : Tri-Tech (Beijing) Company Ltd. Beijing (Ne	w Delhi)		
Doc. Na	me : Pumping Head Calculations for Raw Sewag	ge Transfer F	Pumps IPS-3	
Doc. No	. : TT/BEI/HJ/1051/IPS3/A05 REV. 03	DT. 12.03.2	014	
S.NO.	PARAMETER		VALUE	UNIT
1.0	Individual Pump Flow Rate, Q	:	365.000	M ³ /Hr
		:	0.101	M³/s
	Total Nos. Pumps	:	5.000	
	Nos. Pumps Working	:	4.000	
	Nos. Pumps Stand-By	:	1.000	
	Combined Pump Flow Rate	:	1460.000	M ³ /Hr
		:	0.406	M³/s
2.0	STATIC HEAD CALCULATION			
	Raw Sewage Sump IL	:	39.748	М
	Receiving Manhole N-41 Ground Level	:	50.000	Μ
	Static Head	:	10.252	М
3.0	PIPE FRICTION LOSS - 300 NB DI K7 INDIVIDUAL	DELIVERY		
	Pump Flow Rate, Q	:	0.101	M ³ /s
	Pump Delivery Pipeline Diameter, D	:	0.300	М
	Pump Delivery Pipeline Length (Max), L	:	10.000	Μ
	Pipe Velocity, V = Q/ ( $\Pi$ *D*D/4) Hazen William Equation, V = 0.849 * C * R ^{0.63} * S ^{0.54}	:	1.434	M/s
	Hazen William Co-Efficient, C (CPHEEO Manual)	:	100.000	
	Hydraulic Radius, R = D/4	:	0.075	М
	Friction Slope, S (by Calculation)	:	0.01072	M/M
	Pipe Friction Loss, $H_F = S * L$	:	0.107	М
4.0	PIPE FRICTION LOSS - 700 NB DI K7 COMMON D	DELIVERY HE	ADER	
	Pump Flow Rate, Q	:	0.406	M ³ /s

Pump Flow Rate, Q	:	0.406	M³/s
Pump Delivery Pipeline Diameter, D	:	0.700	М

S.NO.	PARAMETER		VALUE	UNIT
	Pump Delivery Pipeline Length (Max), L	:	750.000	М
	Pipe Velocity, V = Q/ ( $\Pi$ *D*D/4) Hazen William Equation, V = 0.849 * C * R ^{0.63} * S ^{0.54}	:	1.054	M/s
	Hazen William Co-Efficient, C (CPHEEO Manual)	:	140.000	
	Hydraulic Radius, R = D/4	:	0.175	М
	Friction Slope, S (by Calculation)	:	0.00121	M/M
	Pipe Friction Loss, $H_F = S * L$	:	0.907	М
5.0	FITTINGS LOSSES - PUMP SUCTION			
	Pump Flow Rate, Q	:	0.101	M³/s
	Pump Suction Diameter, D	:	0.300	М
	Suction Velocity V = $Q/(\prod/4*D*D)$	:	1.434	M/s
	Velocity Head = $V^2/2g$	:	0.105	Μ
	Entrance Loss Co-Efficient, K	:	0.500	
	Pump Suction Fittings Losses = K * V ² /2g	:	0.052	М

# 6.0 FITTINGS LOSSES - 300 NB DI K7 INDIVIDUAL PUMP DELIVERY

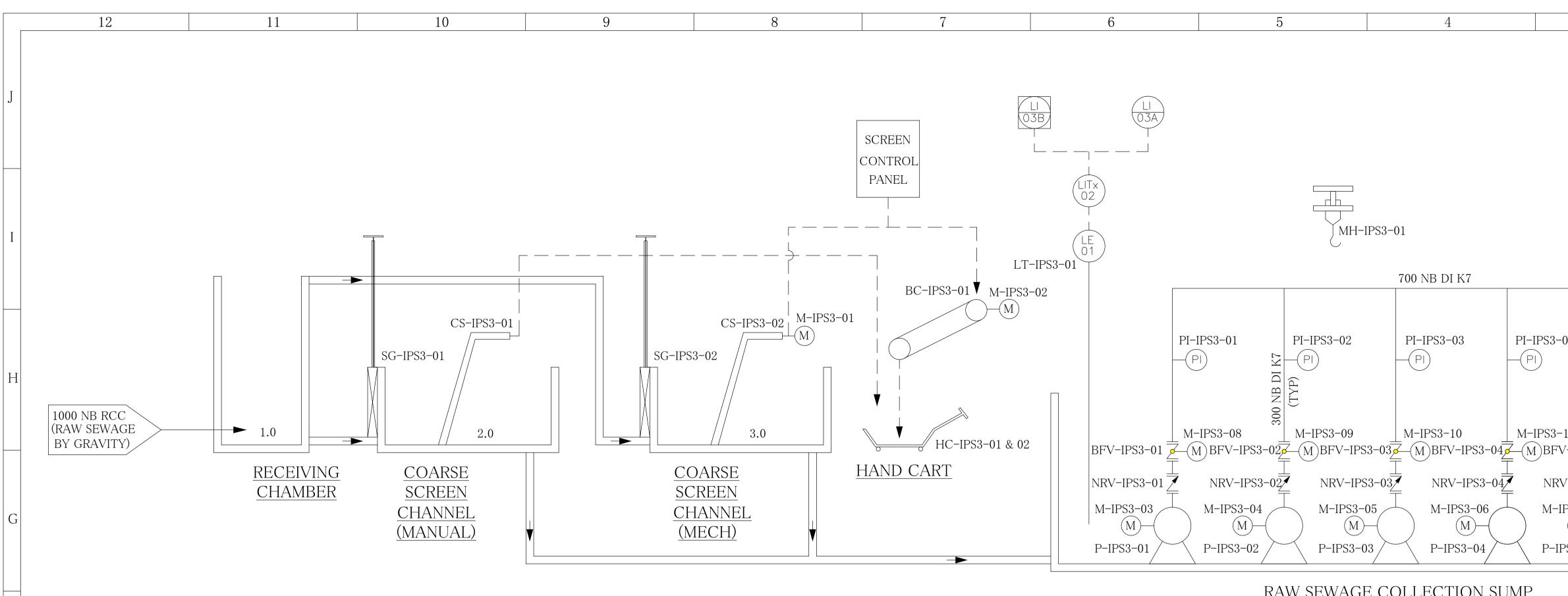
Pump Flow Rate, Q	:	0.101	M ³ /s
Pump Delivery Pipeline Diameter, D	:	0.300	М
Delivery Velocity V = $Q/(\Pi/4*D*D)$	:	1.434	M/s
Velocity Head = V ² /2g	:	0.105	М
Loss Co-Efficient, Reducer 200 NB - 150 NB, K ₁	:	1.000	
Loss Co-Efficient, 90 ⁰ Bends, $K_2$	:	1.000	
Nos. 90 ⁰ Bends, N	:	2.000	
Loss Co-Efficient Non Return Valve, K ₄	:	2.500	
Loss Co-Efficient Butterfly Valve, K ₅	:	1.000	
Total Loss Co-Efficient K = $(K_1 + N^*K_2 + K4 + K5)$	:	6.500	
Pump Delivery Fittings Losses = K * V ² /2g	:	0.681	М


# 7.0 FITTINGS LOSSES - 700 NB DI K7 COMMON DELIVERY HEADER

Pump Flow Rate, Q	:	0.406	M ³ /s
Pump Delivery Pipeline Diameter, D	:	0.700	М
Delivery Velocity V = $Q/(\prod/4*D*D)$	:	1.054	M/s
Velocity Head = $V^2/2g$	:	0.057	М

S.NO.	PARAMETER		VALUE	UNIT
	Loss Co-Efficient, 90 ⁰ / $45^{\circ}$ Bends, K ₂	:	1.000	
	Nos. 90 ⁰ Bends, N (Max) Exit Loss Co-Efficient, K ₆	:	8.000 1.000	
	K6) Pump Delivery Fittings Losses = K * V ² /2g	:	9.000 <b>0.509</b>	М
		•	0.303	IVI

# 7.0 TOTAL HEAD LOSS CALCULATION


Total Head Loss = Static Head + Friction Loss + Suction			
Fittings Loss + Delivery Fittings Loss	:	12.509	Μ
Pump Delivery Head with considering 10% margin	:	13.760	Μ
Pump Delivery Head (Provided)	:	14.000	Μ



3	2	1	
June 1	NODE:2549C GL:48.290	PWD LAND OPP. /CIRIUIT HOUSE IPS-3	J
	NODE:2549 GL:49.700 frailed Rec Talled Rec Rec Rec Rec Rec	NHP.W.DOFFICE	Ι
The second secon	$\begin{array}{c} Rec \\ \hline \\ $		Н
	KEY PLAN		
			G
	UNIT LIST		
S.NO.	DESCRIPTION	SIZE IN METERS	
1	RECEIVING CHAMBER	2.5 x 2.5	
2	COARSE SCREEN CHANNELS	4.5	F
3	WET WELL	14.0 Ø x 2.0 SWD	
4	TRANSFORMER AREA	4.0 x 4.0	
5	ELECTRICAL PANEL ROOM	4.0 x 7.5	
6	DG SET FOUNDATION	4.0 x 4.0	
7	TOILET	2.0 x 2.0	E
,	2 <u>S:–</u> IDCO TO PROVIDE AND TERMINATE PPLY AT HT SIDE OF TRANSFORME		D

С

3	12.03.14		REVISED A	AS PER	REVISED SIZING CALCULATION	M.S.	MB	AKS
2	19.09.13	]	REVISED A	AS PER I	REVISED SIZING CALCULATION	M.S.	SHIV	RKS
1	26.03.13	3 ]	REVISED A	AS PER I	REVISED SIZING CALCULATION	M.S.	SHIV	RKS
REV.	DATE			DES	SCRIPTION	DRN.	CHKD.	APPD.
CLIENT: - BIHAR URBAN INFRASTRUCTURE DEVELOPMENT CORPORATION LTD., PATNA						11		
PROJECT: – 22 MLD SEWAGE TREATMENT PLANT AT HAJIPUR, BIHAR								
BIDDERS NAME: - TRI-TECH (BEIJING) COMPANY LTD. BEIJING, NEW DELHI								
DATE:	DATE: - 27.11.12 TITLE: -							
DRAWN.:- IPS 3 LAYOUT PLAN CUM HYDRAULIC FLOW DIAGRAM						RAM		
CHKD	.: - DR	A. DUTT	SCALE	SHEET	DRAWING NO.			REV.
APPD		A. DUTT	AS MKD.	1 OF 1	TT/BEI/HJ/1051/IP	S3/A0	06	3



	<u>UNIT LIST</u>						
UN	NIT NO.	UNIT DESCRIPTION	DIMENSIONS (M)	QTY	MOC		
	1.0	RECEIVING CHAMBER	2.5 x 2.5 x 1.254 SWD + 6.998FB	1	RCC		
	2.0	MANUAL COARSE SCREEN CHANNEL	4.5 x 0.88 x 1.213 SWD + 0.5 FB	1	RCC		
-	3.0	MECH COARSE SCREEN CHANNEL	4.5 x 1.00 x 1.213 SWD + 0.5 FB	1	RCC		
2	1.0	RAW SEWAGE COLLECTION SUMP (WET WELL)	14.0ø x 2.0 SWD + 8.552 FB	1	RCC		

<u>EQUIPMENT LIST</u>						
TAG NO.	EQUIPMENT DESCRIPTION	SIZE (M) / CAPACITY	QTY	MOC		
CS-IPS3-01	MANUAL COARSE BAR SCREEN	0.675 W x 1.7 HT	1	SS 304		
CS-IPS3-02	MECH COARSE BAR SCREEN	0.710 W × 9.65 HT	1	SS 304		
BC-IPS3-01	BELT CONVEYOR	0.6 W	1	MFG STD		
HC-IPS3- -01/02	HAND CART	0.5 M3	2	MSEP/FRP		
P-IPS3-01/ 02/03/04	RAW SEWAGE TRANSFER PUMPS (W/MOTOR)	365.0 M3/HR x 14.0 MWC	5	AS PER NIT		
M-IPS3-01	MANUAL CHAIN PULLEY HOIST (W/TROLLEY)	3.0 TON	1	MFG STD		

VALVE/GATE LIST							
TAG NO.	VALVE/GATE DESCRIPTION	DIMENSIONS (MM)	QTY	MOC			
SG-IPS3- -01/02	MANUAL SLUICE GATE, FLANGE BACK FRAME, Wall Thimble	800 x 800	2	CI (AS PER NIT)			
NRV-IPS3-01/ 02/03/04/05	NON RETURN VALVE, D/F, PN 1.0, SWING CHECK	300 NB	5	CI (AS PER NIT)			
	BUTTERFLY VALVE, D/F, PN 1.0, Electrically actuated	300 NB	5	CI (AS PER NIT)			

INSTRUMENTATION LIST							
TAG NO.	INSTRUMENT DESCRIPTION	SIZE (MM)	QTY	MOC			
PI-IPS3-01/ 02/03/04/05	PRESSURE INDICATOR, DIAPHRAGM	150/100 NB	5	MFG STD			
LS-IPS3-01	LEVEL SWITCH, CONDUCTIVITY TYPE		1	MFG STD			
LT-IPS3-01	LEVEL TRANSMITTER, ULTRASONIC		1	MFG STD			

12	11	10	9	8	7	6	5	4	A

	LEGENDS:-
<b>F</b>	NON RETURN VALVE
M	MOTORIZED BUTTERFLY VALVE
$\bowtie$	GATE
$\square$	SUBMERSIBLE PUMP
$\bigcirc$	LOCAL INSTRUMENT
$\sum$	PANEL ALARM
	SCADA INDICATION
	SCADA ALARM
	HARD WIRE INTERLOCK
	SEWAGE/WATER LINE
	SLUDGE LINE
LSH	LEVEL SWITCH HIGH
LSL	LEVEL SWITCH LOW
LAH	LEVEL ALARM HIGH
PI	PRESSURE INDICATOR

	LEGENDS:-
LAL	LEVEL ALARM LOW
LE	LEVEL ELEMENT
LI	LEVEL INDICATOR
LITx	LEVEL INDICATOR CUM TRANSMITTER

RAW SEWAGE COLLECTION SUMP (WET WELL) 3

LAH 03B

LAH 03A 2

LAL 03B LAL 03A 1

		LSH 02					et we / leve		JMP					
	LS-I]	PS3-01	)							TO ZO			•	Ι
3-04	PI-	IPS3-05				PI				AT NO	JDE	2 41		H
3–11 SFV–IPS3– URV–IPS3– 1–IPS3–07 M)–( –IPS3–05			() P-IPS	M			(M) -IPS3-	=		M)				G
	/	4.0					F							F
<u>EQU</u>	JIPM	<u>ENT T</u>	<u>AG:-</u>	_	EQ	UIPM	IENT	NO.						E
					IPS TYI		F EQ	UIPN	ЛEN	 I				E
T														0
	12.03.14		) AS PE							MS		MB	AK	
	19.09.13 26.03.13		) AS PE							MS MS		SHIV SHIV	RK	
	30.11.12			BMISSI						P.B		SHIV	A.DU	
REV.	DATE			DESCR						DRN		CHKD.	APP	
CLIEN			BIHAF				RASTR TION					OPME	NT	
1 ·	CT:-	:- mpi	22 MI				BIHA ) CC	R MP					IPUR	λ,
TRI-1	ERS NAME TECH鼎联 Clean Harmony			EIJII CESS	NG, &	NEW INST		ENTA	ATIC	)N				

Owner	: Bihar Urban Infrastructure Developm	ent C	orporation	Ltd. Patna
Project	: Sewerage Network and 22 MLD STP I	Plant	For Hajipu	r Town
Contra	ctor : Tri-Tech (Beijing) Company Ltd. Beiji	ng (N	ew Delhi)	
Doc. Na	ame : Pumping Head Calculations for Raw	Sewa	age Transf	er Pumps IPS-4
Doc. No	o. : TT/BEI/HJ/1051/IPS4/A05	RE	V. 03	DT. 09.07.2013
S.NO.	PARAMETER		VALUE	UNIT
1.0	Individual Pump Flow Rate, Q	:	142.000	M ³ /Hr
	•	:	0.039	M ³ /s
	Total Nos. Pumps	:	5.000	nos.
	Nos. Pumps Working	:	4.000	nos.
	Nos. Pumps Stand-By	:	1.000	nos.
	Combined Pump Flow Rate (for year 2026)	:	568.000	
		:	0.158	M³/s
2.0	STATIC HEAD CALCULATION			
	Raw Sewage Sump IL	:	40.313	М
	Receiving Manhole N-2322B Ground Level	:	47.984	М
	Static Head	:	7.671	М
3.0	PIPE FRICTION LOSS - 200 NB DI K7 INDIVIDUAL	DELIV	'ERY	
	Pump Flow Rate, Q	:	0.039	M ³ /s
	Pump Delivery Pipeline Diameter, D	:	0.200	М
	Pump Delivery Pipeline Length (Max), L	:	10.000	М
	Pipe Velocity, $V = Q/(\prod^*D^*D/4)$ Hazen William Equation, $V = 0.849 * C * R^{0.63} * S^{0.54}$	:	1.255	M/s
	Hazen William Co-Efficient, C (CPHEEO Manual)	:	140.000	
	Hydraulic Radius, $R = D/4$	:	0.050	М
	Friction Slope, S (by Calculation)	:	0.00721	M/M
	Pipe Friction Loss, $H_F = S * L$	:	0.072	М
4.0	PIPE FRICTION LOSS - 400 NB DI K7 COMMON D	ELIVE	RY HEADER	
	Pump Flow Rate, Q	:	0.158	M ³ /s
	Pump Delivery Pipeline Diameter, D	:	0.400	M
	Pump Delivery Pipeline Length (Max), L	:	1600.000	
	Pipe Velocity, $V = Q/(\prod^*D^*D/4)$	:	1.255	M/s
	Hazen William Equation, V = 0.849 * C * $R^{0.63}$ * $S^{0.54}$			
	Hazen William Co-Efficient, C (CPHEEO Manual)	:	140.000	
	Hydraulic Radius, $R = D/4$	:	0.100	М
	Friction Slope, S (by Calculation)	:	0.00321	M/M
	Pipe Friction Loss, $H_F = S * L$	:	5.141	M

#### S.NO. PARAMETER

VALUE

UNIT

#### 5.0 FITTINGS LOSSES - PUMP SUCTION

Pump Flow Rate, Q	:	0.039	M ³ /s
Pump Suction Diameter, D	:	0.200	М
Suction Velocity $V = Q/(\prod/4^*D^*D)$	:	1.255	M/s
Velocity Head = $V^2/2g$	:	0.080	М
Entrance Loss Co-Efficient, K	:	0.500	
Pump Suction Fittings Losses = $K * V^2/2g$	:	0.040	М

#### 6.0 FITTINGS LOSSES - 200 NB DI K7 INDIVIDUAL PUMP DELIVERY

Pump Flow Rate, Q	:	0.039	M ³ /s
Pump Delivery Pipeline Diameter, D	:	0.200	М
Delivery Velocity V = $Q/(\prod/4^*D^*D)$	:	1.255	M/s
Velocity Head = $V^2/2g$	:	0.080	М
Loss Co-Efficient, Reducer 200 NB - 150 NB, K ₁	:	1.000	
Loss Co-Efficient, 90 ⁰ Bends, K ₂	:	1.000	
Nos. 90 ⁰ Bends, N	:	2.000	
Loss Co-Efficient Non Return Valve, K ₄	:	2.500	
Loss Co-Efficient Butterfly Valve, K ₅	:	1.000	
Total Loss Co-Efficient K = $(K_1 + N^*K_2 + K4 + K5)$	:	6.500	
Pump Delivery Fittings Losses = K * V ² /2g	:	0.522	М

#### 7.0 FITTINGS LOSSES - 400 NB DI K7 COMMON DELIVERY HEADER

Pump Flow Rate, Q	:	0.158	M ³ /s
Pump Delivery Pipeline Diameter, D	:	0.400	Μ
Delivery Velocity V = $Q/(\prod/4^*D^*D)$	:	1.26	M/s
Velocity Head = V ² /2g Loss Co-Efficient, 90 ⁰ / 45 ⁰ Bends, K ₂	:	0.080 1.000	Μ
Nos. 90 ⁰ Bends, N (Max) Exit Loss Co-Efficient, K ₆	:	30.000 1.000	
K5 + K6) Pump Delivery Fittings Losses = K * V ² /2g	:	31.000 <b>2.490</b>	М

#### 7.0 TOTAL HEAD LOSS CALCULATION

Total Head Loss = Static Head + Friction Loss +			
Suction Fittings Loss + Delivery Fittings Loss	:	15.937	М
Pump Delivery Head with 10% margin	:	17.530	М
Pump Delivery Head (Provided)	:	18.000	М
Pumping KW rating		10.709	

Owner	•	: Bihar Urban Infrastructure Dev	velopment Corp	oration	Ltd. Patna	3	
Projec		: Sewerage Network and 22 MLI				-	
Contra		: Tri-Tech (Beijing) Company Ltd. Beijing (New Delhi)					
Doc. N		: Hydraulic Design Calculation		,			
Doc. N		: TT/BEI/HJ/1051/IPS4/A02	<b>REV. 03</b>	D	T. 02.07.20	13	
S.NO.	PARAM	FTFR			VALUE	UNIT	
1.0		N FLOWRATE				•••••	
		low Rate, Q _P			16.848	MLD	
	I Cak I I				702.000	MED M ³ /Hr	
					0.195	M /Hr M ³ /s	
					0.195	IM /S	
2.0	RECEI	VING CHAMBER					
	Outfall	Sewer to Receiving Chamber Invert Level	:		42.913	Μ	
	Say		:		42.913	Μ	
	Outfall	Sewer Diameter	:		0.700	Μ	
	Outfall	Sewer Soffit Level	:		43.613	Μ	
	IPS 4 F	inished Ground Level (Considered)	:		50.000	Μ	
	Height,	Top of Receiving Chamber (Above Ground)	:		1.000	М	
	Receivi	ng Chamber Top of Structure Level	:		51.000	М	
	Outfall	Sewer Capacity, Q _P	:		702.000	M ³ /Hr	
			:		0.195	M ³ /s	
	Sewage	e Level in Outfall Sewer (Considered)	:		80.000	%	
			:		0.560	М	
	Outfall	Sewer Top Water Level	:		43.473	Μ	
	Outfall	Sewer Wetted Cross Section Area, A					
	Triangle	e Portion					
	Triangle	e Height, H	:		0.210	М	
	Subten	ded Angle, θ = Cos -1 (Η/ (D/2))	:		53.130	0	

Triangle Base, B = ((((D/2)^2) - (H^2))^0.5)*2	:	0.560	М
Triangle Area, $A_1 = 0.5 * H * B$	:	0.059	$M^2$
Circle Segment Portion			
Subtended Angle, $\theta_1 = 360^0 - (\theta * 2))$	:	253.740	0
Outfall Sewer Wetted Circular Cross Section Area, $A_2$	:	0.271	$M^2$
Outfall Sewer Wetted Cross Section Area, $A = A_1 + A_2$	:	0.330	$M^2$
Outfall Sewer Design Flow Rate, $Q_D$	:	0.195	M ³ /s
Outfall Sewer Velocity, $V = Q_D / A$	:	0.591	M/s
Velocity Head, V ² /2g	:	0.018	М
Exit Head Loss Co-Efficient, K	:	1.000	
Exit Head Loss, K * V ² /2g	:	0.018	М
Receiving Chamber Top Water Level	:	43.455	М
Say	:	43.455	М
Gap, Sewer Pipeline IL - Receiving Chamber IL	:	0.300	М
Receiving Chamber Invert Level	:	42.613	М
Receiving Chamber Side Water Depth	:	0.842	М
Free Board	:	7.545	М
MECHANICAL COARSE SCREEN CHANNEL			
Inlet Sluice Gate Width, W	:	0.450	М
Inlet Sluice Gate Side Water Depth, Z	:	0.450	М
Velocity (across Sluice Gate), $V = Q_P / W^*Z$	:	0.963	M/s
Velocity Head V ² / 2g	:	0.047	М
Sluice Gate Head Loss Co-Efficient	:	0.800	
Head Loss across Sluice Gate, K * V ² / 2g	:	0.038	М
Say	:	0.050	М
Coarse Screen Channel Top Water Level (U/s)	:	43.405	М
Say	:	43.405	

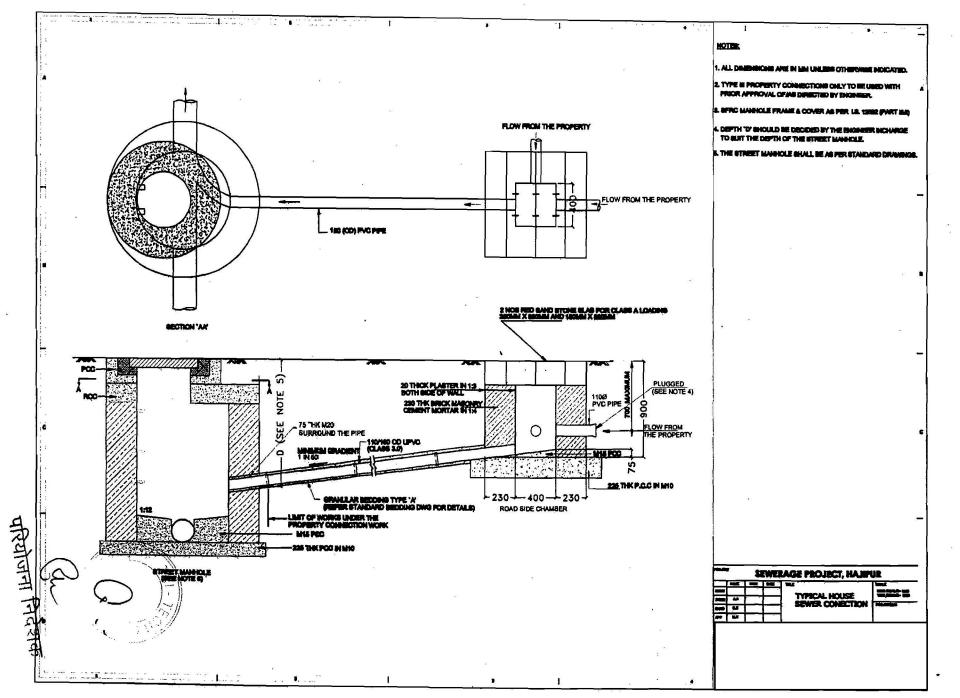
3.0

Co Sa He Co Fre				
Sa He Co Fre	barse Screen Channel Invert Level	:	42.613	М
He Co Fre	parse Screen Channel Side Water Depth (U/s)	:	0.792	М
Co Fre	ау		0.792	
Fre	ead Loss across Coarse Screen (Maxi)	:	0.150	Μ
	barse Screen Channel Top Water Level (D/s)	:	43.255	Μ
Co	ee Board (To Top of Screen Channel)	:	0.500	Μ
	parse Screen Channel Top of Structure Level	:	43.905	М
We	et Well Top of Structure Level	:	51.000	М
Fre	ee Board (To Top of Wet Well)	:	7.595	Μ
IPS	S 4 Finished Ground Level	:	50.000	Μ
4.0 RA	AW SEWAGE SUMP (WET WELL)			
Co	barse Screen Channel Invert Level	:	42.613	Μ
Fre	ee Fall, Fine Screen Channel IL - Raw Sewage Sump TWL	:	0.300	Μ
Ra	aw Sewage Sump Top Water Level	:	42.313	Μ
Ra	aw Sewage Sump Side Water Depth	:	2.000	Μ
Ra	aw Sewage Sump Invert Level	:	40.313	Μ
Fin	nished Ground Level	:	50.000	М
He	eight, Dry Well Plinth Level (Above Ground)	:	1.000	Μ
Ra	aw Water Sump Top of Structure Level	:	51.000	М
Ra	aw Water Sump Free Board	:	8.687	М
ка	aw Water Sump Free Board		8.687	IV

#### Project : DESIGNING PROVIDING LAYING TESTING & COMMISSIONING SEWERAGE PROJECT ON TURNKEY BASIS AT HAJIPUR TOWN

Client : Bihar Urban Infrastructure Development Corporation.

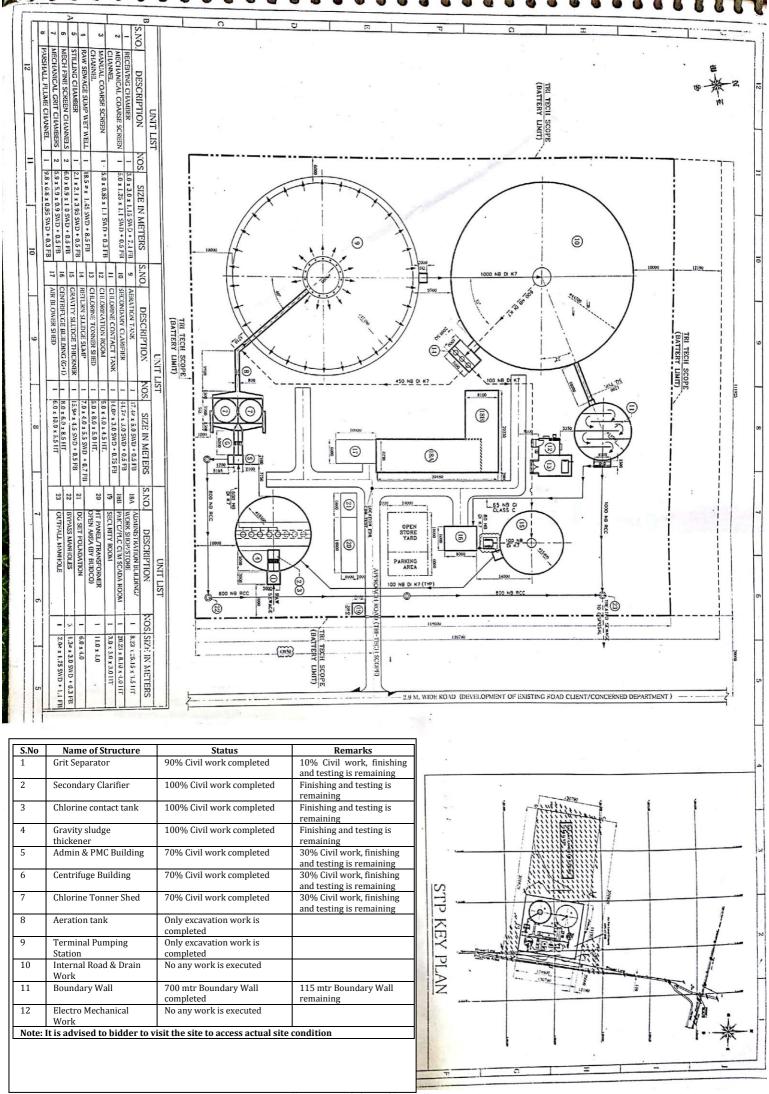
## Head loss calculation of Mechanical Coarse screen for IPS-4


			09.07.2
esign Avg. flow for year 2041 (Qa)		327.6	m3/hr
		0.091	m3/sec
Design Peak flow for year 2041 (Qp)		702	m3/hr
		0.195	m3/sec
Aaximum water depth (Wd)		0.792	М
Bar spacing ( as per NIT) - Bs		25	mm
Bar size ( Width) -Bt		10	mm
Screen inclination $- \theta$		80	Deg
Channel width ( provided) as per sizing calculation )Cw)		0.6	m
Screen Width provided ( refer Sizing calculation for IPS-4) (Sw)		0.3	m
Clogging factor (Cf)		30%	
Coefficeint of discharge(C)		0.7	
Gravitational acceleration (g)		9.81	
lead loss through the clossed screen desired		150	mm
HYDRAULICS CALCULATION:			
et Velocity through screen		1	m/sec
So clear width required		0.2	m
No. of opening		9.85	nos.
de of Deve	say	10.00	
No. of Bars		11.00	nos
nclined Submerged Screen length (Li)		0.804	
/elocity in channel at avg flow (Va)		0.19	
/elocity in channel at Peak flow (Vp)		0.41	
Clear area of screen at No clogging condition (Ac)		0.20	m2
/elocity throught screen at peak flow (Vs1)		0.97	m2/sec
Head loss calculation : by using Bernoulli Equation (Hl1)			
((1/(c*2g))*(Vs12-Vp2)		0.056	m
/elocity through screen at 30% clogged condition (Vs2)		56 1.39	mm m/sec
<pre>Head loss calculation at 30 % clogged condition ((1/c*2g*(Vs2^2-Vp^2))</pre>		0.128	m
		128	mm < 150mm
	Hence		

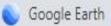
					IPS	5 - 4		
Head Calculation				Ultimate Flow	Inter flow	Ultimate Flow		
Frictional Losses due to fittings (H2) = K	(V2/2g		for	350	For	400	for	450
H2 = head loss, m								
K = co-efficient for bends								
K for bends		=	0.32	0.32	0.32	0.32	0.32	0.32
K for valves		=	0.8	0.8	0.8	0.8	0.8	0.8
K for NRV		=	2.5	2.5	2.5	2.5	2.5	2.5
K for Expander		=	0.5	0.5	0.5	0.5	0.5	0.5
g = gravitational force	m/sec2	=	9.8	9.8	9.8	9.8	9.8	9.8
No. of bends		=	6	6	6	6	6	6
No. of valves		=	1	1	1	1	1	1
No. of NRVs		=	1	1	1	1	1	1
No. of Expander		=	1	1	1	1	1	1
V, velocity through pipe	m/sec	=	1.61	2.028	1.23	1.553	0.98	1.227
Total head loss for fittings (H2)	m	=	0.758	1.200	0.444	0.703	0.277	0.439
Frictional loss in pipe length (H1)		=						
FL = {6.815 x (V/C) ^{1.852} x (1/ D) ^{1.167} } x								
V = Velocity through pipe	m/sec	=	1.61	2.03	1.23	1.55	0.98	1.23
C = Hazen Williams co-efficient		=	140	140	140	140	140	140
D = Dia of Pipe	m	=	0.350	0.350	0.400	0.400	0.450	0.450
Frictional loss in pipe length (H1)	m	=	0.006	0.009	0.003	0.005	0.002	0.003

nt : Bihar Urban Infrastructure Development Corporati	ion					
						09.07.201
Economic Size of Pumping M	lain from IPS	64 to Zone	5 Manhole	e No 2322B	_	0,10,120
Volume provided IPS -4 ( Provided)		=	157.08	m3		
Average Flow in Present Year		=	2.88	m3/min	172.8	m3/hr
Average Flow in Intermediate Year		=	3.96	m3/min	237.6	m3/hr
Average Flow in Ultimate Year		=	5.46	m3/min	327.6	m3/hr
Peak Flow in Present Year		=		, m3/min	399.6	m3/hr
Peak Flow in Intermediate Year		=	9.30	, m3/min	558	, m3/hr
Peak Flow in Ultimate Year		=		m3/min	702	m3/hr
Pumping Rate in the Present		=	6.66	m3/min	399.6	m3/hr
Pumping Rate in the Intermediate		=	9.30	m3/min	558	m3/hr
Pumping Rate in the Ultimate		=	11.70	m3/min	702	m3/hr
Pumping Machinery provided 2026 (Intermediate)		=				
	Each pump o	capa.	142	m3/hr		
Totol pumping capacity at avg flow			426	m3/hr	3W +2SB	
			7.1	m3/min.		
Totol pumping capacity at peak flow			568.00	m3/hr	4W +1SB	
			9.5	m3/min.		
Pumping Machinery provided 2041 (ultimate )		=				
	Each pump o	capa.	142	m3/hr		
Totol pumping capacity at avg flow				m3/hr	3W +4SB	
				m3/min.		
Totol pumping capacity at peak flow				m3/hr	5W +2SB	
			11.8	m3/min.		
	Time of	Time of	No of	No. of	Running	1
Flows	Fill (min)	Empty (min)	Starts/Hr	pumps Working	Time (hr)	
Average Flow in Present Year	55	24	1	1.22	29.21	1
Average Flow in Intermediate Year	40	8	2	1.67	40.16	
Average Flow in Ultimate Year	29	7	2	2.31	55.37	
Peak Flow in Present Year	24	12	2	2.81	67.54	1
Peak Flow in Intermediate Year	17	6	3	3.93	94.31	1
Peak Flow in Ultimate Year	13	3	5	4.94	118.65	

Flows		m3/hr	m3/s	LPS
Average Flow in Present Year		172.80	0.048	48.00
Average Flow in Ultimate Year		327.60	0.091	91.00
Average Flow in Intermediate Year		237.60	0.066	66.00
Peak Flow in present Year		399.60	0.111	111.00
Peak Flow in Intermediate Year		558.00	0.155	155.00
Peak Flow in Ultimate Year		702.00	0.195	195.00
Pipe dia Calculations				
	Velocity	Flow	Area	Dia
for present flow	0.8	0.111	0.14	0.420
for Intermediate flow	1.3	0.155	0.12	0.390
for Ultimate flow	2.2	0.195	0.09	0.336
Head Calculation for Raw Sewage pumps				
Raw Sewage Sump Invert Level	=	40.313	m	
GL at Disposing Point (Zone 5 Manhole No 2322B)	=	47.984	m	
Static head (H1)	=		7 m	


Dia of Pipe in mm	350		400		450		
Area of the Pipe	0.	)96	0.1	126	0.	159	
Velocity m/sec for present flow		15		88		698	
Velocity m/sec for int flow		61		23		.98	
Velocity m/sec for ultimate flow	2.	03	1.	55	1.23		
	Int. Period	Ult. Period	Int. Period	Ult. Period	Int. Period	Ult. Pe	
Flow rate in lps	155.00	195.00	155.00	195.00	155.00	195.0	
Frictional Losses in Pipe per m	0.006	0.009	0.003	0.005	0.002	0.00	
Pumping Main Length in m	1600.00	1600.00	1600.00	1600.00	1600.00	1600.	
Total Frictional Loss	9.53	14.58	4.97	7.61	2.80	4.29	
Static Head	7.67	7.67	7.67	7.67	7.67	7.67	
Head loss due to fitting (Station Losses)	0.758	1.200 2.00	0.444 2.00	0.703	0.277 2.00	0.43	
Residual Head in m	2.00	25.45	15.09	2.00 17.98	12.00 12.75		
Total Head in m	6847.50		7716.25	7716.25	12.75	14.4	
Cost of Pipe in Rs.		6847.50 9.56		3.46		14278. 0.48	
Total cost of pipe Lakhs Kw required	46.66	74.85	35.27	52.88	29.81	42.34	
cost of pump set in lakhs	14.00	22.45	10.58	15.87	8.94	42.34	
Equivalent cost in 2011	14.00	8.14	10.58	5.75	8.94 8.94	4.60	
-		8.14		.33		4.60 3.54	
Present value of Total Capitalised Pump set Cost	22		16		13	J.J4	
Annual Electrical Charges in Lakhs considering Avg Int flow	34.19	54.85	25.85	38.76	21.84	31.03	
Energy cost Capitalised in Lakhs	311.51	499.71	235.49	353.08	199.01	282.6	
Present value of Total Capitalised Energy Cost	-	1.21		3.58		1.69	
Total cost in Lakhs	942	2.90	728	8.37	72	5.72	
Economic size of pumping main as per velocity		=	400	mm		l I	
		=		mm			
Diameter of Pipe (d) Thickness of Pipe (t)		=	6.3	mm			
Modulus of Elasticity of Pipe Material (E)		=	2.1E+10				
Bulk Modulus of Water (k)		=	207000000				
Cross - Sectional Area of Pipe Line (a)		=	0.126				
Normal Velocity in the pipe Line (Vo) Velocity of pressure Wave Travel (C.)		=	1.551 1425	m/s			
velocity of pressure wave Travel (C.)			$\frac{1425}{1+(kd/Et)}$	-			
Velocity of pressure Wave		=	1+(Kd/Et) 1418.03	m/s			
Maximum Water hammer, Hmax		=	C Vo/g				
			224.36	m			
			0				
Conclusion:							
We recommend 400 mm dia K7 Pipesdue to following rease	ons:						
<ol> <li>Presently we are getting the required minimum velocity w</li> <li>In intermediate stage we are getting the required minimum</li> <li>Maximum Operating pressure is 1.8 Kg/cm2 in ultimate s</li> <li>Class K-7 is capable to withstand the pressure upto 25 kg/</li> <li>Maximum surge coming to the systemis 22.4 kg/cm2 with</li> <li>Comparing the maximum surge pressure and design press</li> </ol>	m velocity w tage. 'cm2 10ut any surg	hich is not po ge protection	ossible in 450	mm dia.			
7) However we are providing 3 nos of air release valves to m	inimize the s	surge pressur	e that will be	the extra saf	ety of the sys	tem.	
8) Prize of 450 mm dia pipe not available in bid document,	how vere fo	r 400 mm dia	pipe prize is	available in	Bid docume	nt.	
It is very difficult as well as time consuming to take appr	roval of prise	e for new size	e of pipe line	which is no	t include in		
bid document. 9) In 400 dia pipe we can gate more optimizing velocity , As	per general e	engineering p	vractice veloci	ity in rising n	nain should		




ALL THE STATES

dilla.

23



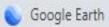

Scanned by CamScanner





X

earth.google.com/web/@25.67329555,85.23370644,54.52674229a,164.61286169d,35y,78.17614638h,44.99821908t,0r/data=ChYaFAoML...  $\leftrightarrow \rightarrow$ C \$




۲

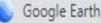
Q

- 0

X



4





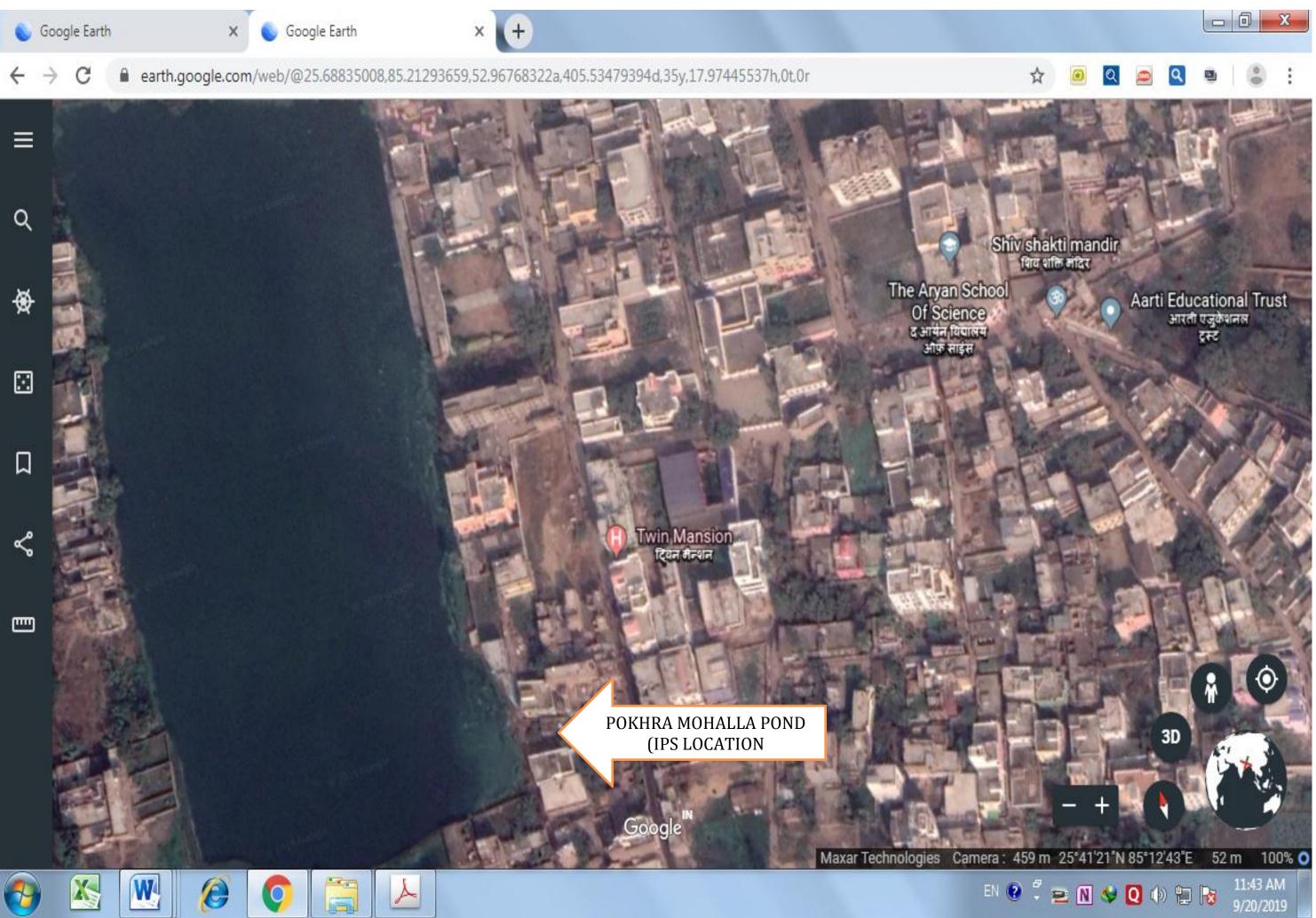

earth.google.com/web/@25.70013762,85.22447935,53.88218166a,181.66180546d,35y,-56.08249271h,44.99517317t,359.99999879r C  $\rightarrow$ 

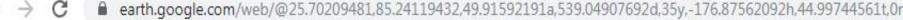













C





